SMART Sensors in tyres or on rims

Sailun Vietnam Plant Launches Rubber Track Production

Since the 1970’s the Anti-Lock Braking system, now almost ubiquitous, has been helping drivers retain control during heavy braking on wet or slippery roads. The wheel rotation sensors, at the heart of ABS, have been co-opted into traction and stability control systems. Drivers do not consciously rely on these systems to save them from a mistake but seasoned drivers (code of older people) will have noticed that they appear to be much better drivers now than when they were in their 20’s. Which is surprising as reaction times increase with age.

What has been happening over the last thirty years is that vehicle safety systems have become more intelligent and tyres have more grip resulting in minor driver errors being recoverable by a combination of driver input, ABS, ESC and ATC. This list of potentially lifesaving innovations will soon include ‘look-ahead systems’ preventing us from tailgating the car in front or straying out of our motorway lane. None of these worthwhile advances has relied upon sensors embedded in the tyre because such sensors were not needed. Will embedded tyre sensors be capable of delivering worthwhile improvements to safety and/or vehicle dynamics without causing service and support problems for vehicle owners.

Quiet tyres

To develop tyres that run more quietly, with better grip and with lower rolling resistance knowledge of what is happening to the tyre as inputs change is vitally important. There will always be a need for tyre sensors that can provide real operating data that supports the predictions made by the analytic tyre models that are increasingly at the centre of our tyre development. Bay Systems responded to this need in 2006 by developing the Tyre Cavity Microphone (TCM) and other measurement modules that are used to study the behaviour of tyres in the laboratory and more importantly on the road, the environment where they are used. When comparing laboratory and road measurement it was clear that road data contains random variations not seen in the laboratory, see figures 1a & b.

The sound pressure level (SPL) inside a tyre is usually dominated by cavity resonance modes, the primary mode being strongest. The rms level of the noise inside the tyre’s cavity, at any given speed, responds to the texture of the road surface, the coarser the texture the higher the rms level. With a little signal processing the signal from the TCM’s microphone can be processed to give an indication of the road surface condition as can the signal from the TCA’s accelerometer mounted or embedded in the tyre liner, see figures 2 a & b.

The microphone positioned on the rim and integrated into the TPMS housing is potentially in a much safer location than a sensor buried in the tyre’s structure. Tyre fitters are used to remove and install TPMS modules making maintenance easier and more affordable than repairing sensors buried in a tyre’s structure. Inevitably sensors and systems will fail and any sensor mounted in the tyre is destined to have a stressful life. Tyre liner temperatures can exceed 120 degrees C depending on; speed, ambient temperatures and tyre type. Elevated temperatures (>50 degrees C) degrade batteries and semi-conductors. Most semi-conductors fail or suffer dramatically shorter service lives if their ambient temperature regularly reaches 80-100-degree C.

For many drivers the prospect of warning lights burning on their dashboards due to tyre mounted transducers failing will be very unwelcome, particularly if the recommended cure is to buy a new tyre. If the only way to pass the annual vehicle inspection, common in many countries, is for the tyre safety system to be working or not fitted then the not fitted option will be preferred by most buyers of used vehicles. If SMART wheel sensors can be shown to deliver genuine benefits then integrating them into a rim mounted package might be the lowest risk approach, at least from the customer’s perception.

Universal TMS

A Universal Tyre Monitoring System (UTMS) package would therefore appear to be the most attractive option in terms of convenience and minimising the costs associated with maintenance and repair. Essentially the Bay Systems’ TCM system is a UTMS system, albeit for R&D use only. The key question is therefore; ‘Can the data from UTMS be usefully employed to enhance vehicle utility, handling and safety?’ This is a difficult question to answer, for handling and safety, as for these applications the chassis management system (CMS) computer must receive and process signals in real time for the information to be usefully employed. Being informed that road surface icing has occurred some 30 metres after the vehicle has transitioned onto ice is liable to be too late. The signal from a tread liner accelerometer, see figures 3a. shows the transition from wet to flooded road, N.B. the vehicle was not aquaplaning but a slight increase in speed might well have invoked it. This raw time history would need to be processed before it could be used to trigger an intervention, in figure 3b a wavelet transform is used to highlight the differences between wet and flooded road surfaces. Real time responses imply high data rates from sensors, which in turn result in higher power consumption. Getting power to and signals back from the two front wheel sensors, rear wheel road surface information is typically front wheel data delayed by 3 metres, or from all wheels will be a challenge. Vehicles may be parked for days and even weeks, UTMS must shut down completely to conserve battery life. This may be achieved using a motion switch, these are readily available but as always adding complexity increases the risk of failures. The bigger problem is how to maintain and recharge the battery during normal usage. Any form of physical coupling through a connector will certainly be damaged or fail through water ingress making some type of induction coupled charging a more attractive option.

Low power radio transmission has worked well for TCM. However, such a system across the entire vehicle fleet may present problems on densely trafficked roads. On a busy motorway a vehicle might pass within 2 metres of another vehicle at a rate of 10 per second. Should all of these vehicles be using the UTMS radio spectrum then there will be up to 40 channel contentions per second to resolve. It is unlikely that radio spectrum will be made available that allows space for more than 100 channels. Each vehicle’s UTMS radio system must be primed to channel hop to avoid contentions from up to 10 interfering vehicles per second while sustaining a minimum data rate of 100kbytes per second.

Such a work load imposed be an ever-changing mix of vehicles will be difficult to manage without gaps in the data. A possible solution exists if the transmitted power from UTMS is very low, to the point that signals are only detectable inside the transmitting vehicle’s own wheel arch. Very low power radio transmission also brings low power drain at the transmitter making power supply easier. However, it also implies that a high receiver sensitivity might be needed. The extremely weak signals from nearby vehicles may therefore become detectable which returns us to the problem of radio channel contentions. Setting a low transmission power limit is therefore likely to be an area of diminishing returns and the channel contention issue is likely to always exist for high data rates.

To calculate the instantaneous rolling resistance of each wheel the CMS will require only two measurements; the temperature of the tyre and its pressure. A once per second reading rate for these two parameters would be enough, due to the tyre’s relatively high thermal inertia and

the normally slow rate of change of inflation pressure. The liner temperature measurement might be over a single area or across a section of the tyre. In the case of our TCT system (aimed at tyre R&D) the measurement is over 64 pixels and can stretch from bead to bead or be focused on an area if interest e.g. the tyre’s shoulder with an accuracy of 0.1 degrees C and resolution of 0.01 degrees C. A measurement cycle, even at high resolution would require a data packet of less than 200 bytes which with overhead might be 1kbytes. This rate would fit into the radio channels even on a busy motorway making dynamic estimation of rolling resistance possible while real time road surface measurement would be problematic.

Rolling resistance can account for up to 30% of battery energy in an EV making the choice of tire and the way the vehicle is driven very important; potentially being the difference between driving and walking the last few miles home on a cold wet night! There will be, for any journey, an optimum vehicle speed and route where energy consumption will be minimized. The probability of reaching the destination will be increased if this route is followed but it is more important to alert the driver if there is a significant probability of not reaching the destination on the remaining battery charge.

EVs with batteries that are over three years old may have battery capacities of 80% or less of the new capacity. This makes a planned journey of just 100miles (160km) problematic, particularly when air conditioning, heater and windscreen wipers are all operating. This range deficit may increase with traffic conditions such as road works, detours, accidents etc. To increase driver confidence a fully integrated vehicle management and GPS route planning system would need to use environmental data such as ambient temperature, wind speed and direction together with vehicle data such as load and UTMS derived tyre liner temperature and pressure to calculate the projected energy consumption for any proposed route. For this total tyre energy budget to be calculated for the journey the full tyre specification will be needed for each tyre i.e. the rolling efficiency for all temperatures, inflation pressures, loads and temperatures. The GPS navigation system, using these parameters and taking into account traffic updates would then evaluate the probability of reaching the destination without a battery recharge. If the journey was beyond the battery range an alternative route would be suggested that would pass a recharging station.

Data accuracy

The key to all this working reliably will be the accuracy of the tyre specification data entered into the CMS. What will be needed will be the full energy dissipation profile for all conditions, not just the laboratory performance rating, though this would be better than nothing. Tyres are currently rated for energy dissipation (rolling resistance) when operating in a laboratory at 25 +/- 4 degrees C while running on a smooth steel road wheel. The tyre is run for 30 minutes at 80kph before the test, is correctly inflated and is carrying 80% of its maximum load. Our measurements have revealed that the liner temperature across similar tyres from different manufacturers can vary from 50 to 90 degrees C for this test.

Energy dissipation drives the liner temperature higher until thermal equilibrium is reached. On the road, in the real world, the maximum temperature measured on the liner of a Mazda BT50 pickup truck tyre was 45 degrees C when pulling a trailer at a steady 100kph for 6 hours with an air ambient temperature of 22 degrees C. i.e. much lower than would have been expected. Energy efficiency improves with increasing temperature at the rate of 0.6% per degree C, over the temperature range 15-50 degrees C. It is highly likely that most tyres operating in temperate regions are not delivering their labeled energy efficiencies because they are running cool. This applies even in the summer when ambient temperatures are near those specified for the laboratory. In the winter the Mazda truck tyre did not reach 30 degrees C. i.e. half of the lab test result and probably 2 full tyre grades worse performance than the label states, possibly resulting in a 5+ mile shortfall in vehicle range.

While the case for in tyre sensors and even rim-based sensor fitment to vehicles is open to debate the case for their use in R&D is now well proven and accepted. Tyre internal noise and tyre cavity resonance is easily and reliably measured with good accuracy, both on a laboratory road wheel and on the highway. The differences between tyres from different manufacturers can be quickly evaluated, see figures 4 a & 4b, allowing car makers to choose a tyre best suited to their vehicle and the road surfaces it is most likely to be driven over. For the tyre companies their new product development can be steered towards lower levels of noise and cavity resonant modes.

The primary cavity resonance mode if heard in the vehicle cabin is annoying and is often interpreted by the owner as a defect. For auto makers noise complaints are a concern as investigation in the field is costly and if unresolved becomes a barrier to a repeat sale. Tyre companies are encouraged by auto makers to reduce cavity resonant mode levels and reduce road noise. The loss of vehicle control is a much more serious matter and has always been at the top of the priority list for tyre and auto companies. The measurement of tyre liner acceleration provides a great deal of information including early warning that the threshold for aquaplaning is imminent, see figure 3a.

Reductions in pre and post contact patch waves, see them clearly in figure 5, that propagate around the tyre will lead to reductions in radiated noise and lower pass-by noise levels. No improvement in a tyre’s characteristic comes free of charge and this cost is often a trade off with other equally desirable characteristics. Typically, less grip and faster wear rates are what result when a tyre’s energy dissipation is improved. Wet grip performance is featured on the tyre label and who would deliberately choose a tyre with lower wet grip. Leaving the most likely trade off candidate as wear and of course faster wear means more particulates shed into the environment which is undesirable. It seems likely that wear rate will soon appear on the tyre label. There seem to be no unalloyed successes, only the least worst choices to be made!

Hankook’s Winter i*Pike SR10W Masters The Snow And Ice At Rally Sweden

Hankook’s Winter i*Pike SR10W Masters The Snow And Ice At Rally Sweden

Hankook Tire concluded Round 2 of the 2026 FIA World Rally Championship, Rally Sweden, on 15 February in the Umeå region, where its Winter i*Pike SR10W tyre was put to the ultimate test. As the championship’s sole rally tyre supplier, Hankook equipped all competing crews with this dedicated winter tyre, which features specially engineered ice-rally stud pins. Designed to conquer the most severe icy environments, its asymmetric tread pattern works in tandem with the studs to provide exceptional grip, powerful braking and unwavering high-speed stability on frozen surfaces.

Rally Sweden, first held in 1950, is unique on the calendar as the only event contested entirely on snow and ice. Crews were challenged by 18 special stages covering around 300 kilometres, with competition intensified by speeds reaching up to 200 kmph and rapid temperature fluctuations. These punishing conditions demanded precise car control, reliable tyre traction and steadfast braking performance, making the choice of the Winter i*Pike SR10W critical for success.

Following a fierce contest, Toyota GAZOO Racing’s Elfyn Evans and co-driver Scott Martin claimed victory by a margin of 14.3 seconds, securing their second consecutive win in Sweden. Having also finished second in the season opener at Rallye Monte-Carlo, this result propelled the pairing to the top of the championship standings with 60 points.

The WRC now turns its attention to the formidable Safari Rally Kenya, scheduled for 12 to 15 March 2026 near Naivasha. This event is renowned as one of the most gruelling on the circuit, where crews must navigate extreme heat, mud from heavy rainfall and rapidly changing weather.

Hankook’s commitment to the sport extends beyond event supply. The company continues to refine its high-performance rally technology through intensive collaboration with the FIA and major automotive manufacturers, having completed over 2,000 kilometres of real-vehicle testing across eight countries. With its exclusive tyre supply agreement for all WRC classes covering the 2025 to 2027 seasons, Hankook is reinforcing its premium brand identity and solidifying its leadership in motorsport engineering.

Ecolomondo Engages Craft Capital To Lead NASDAQ Uplisting And Financing Strategy

Ecolomondo Engages Craft Capital To Lead NASDAQ Uplisting And Financing Strategy

Ecolomondo Corporation, a leading Canadian innovator in sustainable scrap tyre recycling technology, has appointed Craft Capital Management, LLC as its strategic investment banking advisor. This partnership is designed to bolster Ecolomondo’s capital markets strategy, with a focus on financing initiatives and a planned uplisting to the NASDAQ. Securing this position is a key step for the company to obtain the necessary capital for its global expansion.

Eliot Sorella, Ecolomondo’s Executive Chairman, highlighted that Craft Capital’s successful history of providing capital solutions is well-aligned with the company's goal to scale up as a major supplier of recovered carbon black and tyre pyrolysis oil. These materials are produced using Ecolomondo’s proprietary Thermal Decomposition Process. As worldwide demand for circular and sustainable materials grows, this advisory engagement is seen as a vital move to advance the company's market position and support its next growth phase.

Craft Capital, a full-service brokerage firm with over a century of combined financial experience, offers customised investment banking services and connects clients to a broad network of family offices and institutional investors.

Sorella said, “Craft Capital’s proven track record in delivering capital solutions aligns strongly with our strategy to scale as a leading producer of recovered carbon black (rCB) and tyre pyrolysis oil (TPO) using Ecolomondo’s proprietary Thermal Decomposition Process (TDP). As global industries accelerate their transition towards circular and sustainable materials, this engagement is an important step in advancing our capital markets strategy and supporting our next phase of growth.”

Continental To Present Next-Gen Tyre Solutions For Autonomous Driving At Tire Technology Expo

Continental To Present Next-Gen Tyre Solutions For Autonomous Driving At Tire Technology Expo

Continental is set to make a significant impact at the upcoming Tire Technology Expo in Hannover with a strong presence at the technical conference scheduled for 3 March 2026. The company will kick off the event with a major presentation centred on the evolution of tyre technologies designed to meet the demands of autonomous driving. Dr Andreas Topp, who leads Platform Development and Industrialisation for passenger car tyres at Continental, will illustrate how the vision of autonomous vehicles is transitioning into everyday reality and how the tyre manufacturer is proactively developing innovative solutions to support this shift.

In addition to the opening session, Continental experts will deliver three further presentations, each addressing critical areas of tyre science and environmental regulation. One of these will explore the use of recovered carbon black derived from end-of-life tyres as a filler material. Professor Jorge Lacayo-Pineda, a specialist in materials evaluation, will delve into the complexities of identifying this material within vulcanised rubber compounds. Recovered carbon black, primarily obtained through pyrolysis, represents a milestone as the first industrially scalable filler sourced from discarded tyres. It is not considered a direct substitute for conventional carbon black but rather a distinct category of filler due to its unique composition, which includes carbon residues and a specific thermal background. Professor Lacayo-Pineda will examine the technological and regulatory possibilities that arise from detecting this material in new tyre compounds, focusing on reliable identification techniques such as electron microscopy and molecular spectroscopy.

Another key presentation will broaden the conversation around tyre emissions. Dr Frank Schmerwitz, a senior test engineer specialising in tyre wear, will address the limitations of current discussions that predominantly focus on tyre and road wear particles. He will highlight additional pathways of mass loss that are not captured by conventional measurements. His talk will consider the release of nanoparticles, the persistence of wear residue on road surfaces and the chemical degradation of this material due to environmental factors like oxygen and ultraviolet light, aiming for a more complete scientific picture.

The final presentation will tackle the complexities of modern tyre development in the context of new regulatory frameworks. Dr Pavel Ignatyev, an expert in rubber friction and wear physics, will discuss how the introduction of standardised abrasion limits and measurement methods under the Euro 7 regulation is reshaping innovation in the industry. He will explain the various parameters influencing tyre wear and how they interact with these new requirements. Through simplified models, he intends to demonstrate the intricate nature of tyre wear and outline the collective challenges that remain for the industry, emphasising that a deep understanding of these dynamics is crucial for translating regulatory mandates into effective technological advancements.

Dr Topp said, “The future of self-driving vehicles has begun. We are developing tyre technologies and products that meet the unique technical requirements of these vehicles. This includes topics such as interaction with smart vehicle dynamic controls, optimised fleet operations and tailored solutions for specific use profiles.”

Pirelli C3 Compound Shines Across Six Days Of 2026 F1 Pre-Season Testing

Pirelli C3 Compound Shines Across Six Days Of 2026 F1 Pre-Season Testing

The concluding day of 2026 F1 Pre-Season Testing at the Bahrain International Circuit saw Charles Leclerc set the overall fastest lap of the entire six-day programme. The Ferrari driver delivered a time of 1:31.992s on the C4 compound Pirelli tyres during the final hour of running, improving by eight-tenths of a second on the previous benchmark established by Kimi Antonelli. This performance placed him ahead of Lando Norris in the McLaren, who recorded a 1:32.871s on the C3 tyre. Max Verstappen and George Russell followed, with times of 1:33.109s and 1:33.197s, respectively, both also set on the C3 compound. Notably, none surpassed Leclerc's own leading time on that particular compound, a 1:32.655s. Pierre Gasly rounded out the top times, utilising the softest C5 tyres to post a 1:33.421s.

The C5 compound saw limited use on the final day, employed only by Alpine and Williams for short-run simulations. Aston Martin, despite having the tyre available, opted not to run it and instead completed just six laps on C3s before their session was curtailed. In contrast, teams focused on different aspects of performance. Gabriel Bortoleto and Arvin Lindblad set the pace on the harder C1 and C2 compounds, respectively. The day was also notable for the absence of several drivers, including Fernando Alonso, Lewis Hamilton and Alex Albon, who did not participate in any track action.

Beyond outright speed, teams dedicated significant effort to long-distance evaluation. Gabriel Bortoleto completed 25 laps on the C2 compound for Audi, while Esteban Ocon undertook 24 laps on C1s for Haas. Ocon was also the sole driver to run intermediate tyres, completing four laps to assess front wing behaviour. Over the entire six-day test, a total of 41,366 kilometres were covered across all 11 teams, a distance exceeding the Earth's circumference. The C3 compound proved the most popular, accounting for 61 percent of all laps. In total, 591 sets of slick tyres were utilised throughout the pre-season, with 326 of those deployed in the final three days alone.

Mario Isola, Pirelli’s Motorsport Director, said, “The radical changes introduced to the cars have inevitably shifted the teams’ focus towards power units and aerodynamics rather than tyres over the last few days. The final stages of testing are usually dedicated to optimising the car-tyre package, but it is clear some teams haven’t reached that point yet. Generally speaking, track feedback has been consistent with our simulation expectations. Drivers were able to gain confidence with the entire Pirelli range through both performance trials and long runs, even using the C4 and C5 compounds which aren’t particularly suited to a circuit like Sakhir.

“Mechanical resistance appeared strong across all options, with no signs of graining or blistering. Degradation levels are almost certainly higher now than what we expect for the Bahrain race, when temperatures will be lower and cars more developed. A central theme this season will certainly be balancing temperatures between the axles, especially ahead of the first race in Melbourne. The lower loads of a street circuit might require more intensive tyre preparation or differentiated tyre blanket temperatures, particularly in qualifying. In any case, it will be interesting to discover in Australia how much teams have been ‘sandbagging’ their engine power to avoid showing their hand. We only have to wait a couple of weeks to see the true pecking order.”