AUTOMATED TYRE MANUFACTURING: NO TURNING BACK

Goodyear Tire launches portal for fleet tyre management

There couldn’t be any industry that isn’t implementing, or at least knowing about, automation. And if there’s actually one, then it has probably been living under a rock. The tyre industry has already opened its doors to automation, and this helps make tyre manufacturing more sophisticated and reliable. The tyre manufacturing process itself has been experiencing constant changes – from different tyre sizes and constructions to targeting less usage of energy. Automation must be on every tyre company’s to-do list, if it hasn’t adopted it already. Don Heelis, Sales Manager, Cimcorp, gave Tyre Trends more insights on the different aspects of automation in the tyre industry and its absolute requirement, when we met him at the Tire Technology Expo 2022 in Hannover, Germany. Read on…

The philosophy of tyre manufacturing has changed dramatically. A part of the change in that philosophy relates to automation implementation in the tyre manufacturing process. However, we also find more technical perspectives being adopted and taken into account at new, modern tyre factories today.

This technical perspective can be considered to be coming from a few different areas, one of them certainly being from the actual production part of the tyre factory. Therefore, with production machinery, mixers, extruders and tyre building machines, the level of technology being implemented in these processes is increasing. Moreover, these processes are getting more sophisticated.

The other aspect of this is integrating the production across all the different areas (another factor for the dramatic change in the modern tyre factory). In the past, the different areas of production were not necessarily well connected. However, today we see them getting connected a lot more – and this is being driven and enabled by technology.

This is where companies like Cimcorp come in – who happen to provide material handling and automation technology so that different tyre manufacturing processes are better integrated.

Explaining this, Don Heelis, Sales Manager, Cimcorp, said, “When you produce your work in process, what you’re producing is in synchronisation with what’s being produced in other areas of the factory. This helps minimise the work in process and have a manufacturing process that’s more efficient.”

Going the modular way
But how does one integrate different machines and processes in the plant with all the different machines and manufacturing processes involved? Heelis let us in on this.

“The trick is to implement the automation and connectivity in a modular way,” he revealed and went on, “That way, the connectivity is physical and mechanical but involves software as well. Thus, we take an approach where the modules are flexible and can connect to various inputs and outputs; however, the module is in itself standardised. Hence, the modules can work for different factories – only the interconnection needs to be flexible.”

The green tyre
While implementing automation, one, of course, would want to implement it where they get the biggest value. “Traditionally, that has been in the palletising area – in managing and handling the finished product. Basically, palletising, storing and retrieving the finished product,” Heelis informed us and continued, “This is where everyone has traditionally looked in the past. However, a lot of focus has been put on the green tyre area in the past 10 years. That includes green tyre handling, storage and retrieval and its automatic delivery to the curing process.”

A green tyre is work in process – simply put, a tyre that has not been cured. “A green tyre is made up of a number of components. It’s built on a tyre-building machine,” Heelis further told us. “Once a green tyre is built, it is buffered, followed by being cured – and automation machines are required in order to do this. Hence, this is a key element of the modern tyre factory.”

He added, “This has been an area of key focus where productivity and simplicity can be gained. In fact, the whole process can be done with less plant floor space. Ultimately, factories that want to be competitive have to implement automation technologies in that area.”

Increased efficiency
There are many brownfield factories out there that have to modernise and be viable for the future. One of the key areas that they need to modernise and automate in is green tyre handling. Heelis asserted, “By having an automated storage and retrieval system, one can track and trace all of the work in process. Plus, one is able to store in a manner that maximises the quality of the green tyres. And then, one can deliver them from the storage system to the curing process in a very systematic and accurate way. This way, when a particular green tyre is needed in the curing area, it can be delivered there in the appropriate amount of time.”

“In this methodology, when the green tyre arrives at curing, it is at that point in time when it is needed, and the production does not have to stop,” Heelis further shared. “If this can be achieved, then the curing process can be run more efficiently; the efficiency can go from 80 percent to over 95 percent. In theory, one can increase the output of their factory by 10 percent. In such a case, one can imagine how many tyres can be produced in a factory by following this methodology.”

Automation – its role during the pandemic and inflation
While automation tends to bring in efficiency, how have companies managed to keep up their competence and productivity during the thorny period of the Covid pandemic? The pandemic has definitely brought some insights to the tyre industry from a management point of view, like it did to many other sectors. According to Heelis, automation has come to the rescue of the tyre industry in the pandemic as well.

“One important thing that the industry learnt from the pandemic was that it has a risk to its ability to produce products,” he mentioned and went on, “The absence of automation will make any company in the industry highly dependent on the labour force, which might not be available to keep the production going. On the other hand, with automated processes, a company is less at risk to events like a pandemic.”

Another issue we are dealing with right now in the global economy is inflation. Inflation equals to costs going up – from the cost of materials to the cost of labour. “Nonetheless, a company can mitigate some of the impacts of inflation if it has embraced automation. In fact, the ones who automated their brownfield factories three to four years ago are in a much better position today than their competitors who had not,” Heelis pointed out and went on, “This is because the former can mitigate some of the inflation costs, is less dependent on the workforce and is able to produce better-quality products – and at a higher level of efficiency at that. We know that there is a tremendous shortage of people in the workforce in the US right now. Therefore, automated companies have a significant competitive advantage.”

From the tyre industry’s challenges due to the pandemic and inflation, we turned to the challenges Cimcorp itself faces on the commercial side. Heelis responded that, commercially, the current challenge for them is being a low-cost, high-quality producer – which one has to be in order to compete in the market. “Furthering this challenge is how we become a low-cost, high-quality producer and stay that way. And from our perspective, the way to get there is through innovation and technology,” he stated.

Automation in the Asian tyre industry
CIMCORP opened up an office in India roughly three years ago. With its presence in the country and Asia, Heelis told us that the tyre companies in Asia are no stranger to automation and are implementing it. “As a move forward, the mentality is that if you want to be a world-class manufacturer and build a new factory, then you build the factory with automation. And this is a global perspective,” Heelis asserted.

Cimcorp’s customers in Asia range from traditional tyre manufacturers to new manufacturing entrants in the industry, so it’s a mix. Throwing further light on this, Heelis said, “We all know the traditional manufacturers like Bridgestone, Michelin, Goodyear, Continental and more. But beyond these, there are new companies emerging. And these new companies have an advantage in some ways because they are not constrained by the old ways of thinking. They are forward thinking, with a clearer mindset to do things in the current environment – the environment of automation and technology.”

“Moreover, the manufacturers who don’t invest in automation, and try to run the company with practices that were developed in the 1960 and 70s, will not be able to survive or compete,” he further added. “Their market will eventually consider them to be non-competitive, non-global and unable to produce the quality expected of them.”

Cimcorp has plans for India as well. “Our strategy is to continue to grow our business in India with the domestic tyre manufacturers, and we have been successful at that,” Heelis shared and went on, “When I say domestic, that goes for manufacturing facilities within India, from Apollo Tyres to MRF to JK Tyre to Goodyear to Michelin. Thus, we plan to continue to build our business with those factories and customers from an automation perspective, and then from a full customer service point of view.”

The other aspect comes to brownfield factories. Heelis averred, “With brownfield factories, whether in North America or Asia, the cost of automation is the same; there may be different payback scenarios between the two. However, it stands true that no matter where a company is present in the world, if it is operating a brownfield factory, then it needs a strategy to modernise. And the strategy to modernise is based on implementing automation.”

Automation in brownfield factories – what will it take?
The strategy to modernise when automating a brownfield factory is especially challenging in an already existing system. Therefore, when automating a brownfield factory, one of the most important considerations is to not interrupt their day-to-day production, Heelis cited. He mentioned that the factory has to continue making its certain number of tyres each day. Hence, a strategy that enables the factory to do that is needed – while concurrently implementing automation there.

“Besides, when you implement automation, you have to be able to do it in a standardised way,” Heelis further enlightened and continued, “This can be done with the help of flexible automation modules that can work in a lot of different scenarios. Therefore, you can deal with different brownfield factories depending just on how you arrange your automation modules. Thus, you can come up with a custom solution for every different brownfield factory out there with the help of a modular approach and on the basis of how you connect those automation modules together.”

Service provided
From providing standard modular systems to hardware to software, Cimcorp strategically has a service aspect to its business – Success Services. Therefore, the approach from its service side is to enable its customers to be as successful as possible.

“That could be achieved by providing a 24/7 support. So if the customers contact us due to an issue they are facing in the solutions provided by us, we are available at any time of the day or night to support them,” Heelis revealed and added, “We can do it remotely. In fact, as technologies emerge further, we’ll see how we can do this more remotely with virtual techniques. Here, their serviceperson could be using special tools, which enables our people (who are remote) to actually be in virtual situations in our customers’ plants. In such wise, we can be more responsive and be as if we are in place in real-time in order to provide a service.”

Tyre warehouse automation or manual operation – making the choice
Nevertheless, Cimcorp does not just stop at its 24/7 services or providing its automation solutions for tyre manufacturing processes. It goes beyond that – to the finished product warehouses. However, interestingly, that depends to a degree on which part of the world the automation is needed in; while some areas will need automation that is well advanced, some areas will use a more manual operation.

Heelis explained, “There are some key factors that determine whether the facility/area in question needs to be automated or not. For example, the cost of real estate. If it’s a manual operation, then that typically involves a very large warehouse, say around 100,000 sq mt.”

“For automating, on the other hand, you require lands that are much smaller,” Heelis further highlighted. “For instance, land is very expensive in Japan. Thus, one wouldn’t want a very big footprint warehouse over there. Which means, you go vertical wherever land is expensive.”

“On the flip side, land is very cheap in some areas and inexpensive to build the generic building (like in some areas of the US). So there is less incentive to go vertical with automation there,” he added. “But there might be other factors that could dominate.”

Choosing automation over manual operation – why?
While some main factors do influence the decision if a warehouse is going to be a fully automated one or a semi-manual one, an automated one is always preferred. For clear reasons.

“The benefit of an automated warehouse is that everything is extremely well controlled,” Heelis informed. “What’s more, you have complete control of your product – you know exactly where it is, how much of it you have and you can get on-demand access.”

“As for a semi-manual warehouse, there are fork trucks, people moving things around and putting them in different storage locations,” Heelis further clarified. “This process is much more manual, involves a lot more interaction and is time consuming. Therefore, you have much less control over the process.”

Automation – a need not to be confused as a luxury
The automotive industry has been one of the earliest industries to adopt automation. So it’s high time that tyres, an integral component of any vehicle, did so too. It’s clear that automation, today, is not a luxury but a need. No company can afford to not have it. No tyre company must be limited to older technologies, and they must invest in automation for the long term. This would not just help tyre manufacturers meet their customers’ demands without any delay, but also help modernise the industry with the world’s rapidly changing technologies.

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Launches World’s Biggest Secondary Shredder

Fornnax Technology Pvt Ltd has introduced the R-MAX3300, a new secondary shredder presented as the largest in its category. The official launch occurred on 14 October 2025 at the prominent IFAT India environmental technology exhibition in Mumbai. The unveiling ceremony was a significant industry event, attended by numerous leaders from the cement and waste management sectors. Key figures present included executives from GEPIL India, Zigma Global, Prism Johnson Ltd, Shree Cement Ltd and Mangalam Cement Ltd.

This shredder is positioned as a major technological advancement for India's recycling and waste processing infrastructure. It is designed to provide a powerful solution for Cement Alternative Fuel and Resource plants as well as waste-to-energy facilities. While the established R Series shredders are known for processing high-density materials such as tyres and cables, the R-MAX3300 is specifically engineered for low-density waste streams. These targeted materials include Municipal Solid Waste, Commercial and Industrial waste, Construction and Demolition debris, bulky items, legacy waste dumps and wood waste.

The machine integrates advanced shredding technology to efficiently produce Refuse Derived Fuel and Solid Recovered Fuel, achieving an optimal output particle size between 30 and 50 millimetres. Its construction emphasises durability, operational versatility and high performance to meet the demands of large-scale industrial applications requiring consistent fuel quality.

The R-MAX3300 is built for high-volume processing of pre-shredded or coarse materials. Its applications are expected to be crucial in producing solid recovered fuel, preparing waste for composting and reducing waste volume for more cost-effective transportation. The shredder is anticipated to be a key asset in Integrated Waste Management Projects and bio-mining operations across India and international markets.

Jignesh Kundaria, Director and CEO, Fornnax Technology, said, “The R-MAX3300 represents a monumental leap forward in our vision to become a global leader by 2030 in recycling technology through innovation. With the rising challenges of waste management in India and globally, this machine is not just a product; it’s a powerful tool for change. We engineered it to handle the most difficult waste streams with unparalleled efficiency, turning what was once considered unusable waste into a valuable resource. It directly addresses the urgent demand for effective, large-scale shredding technology that can support cement kilns and waste-to-energy facilities in achieving the desired output. Our commitment goes beyond just selling machinery; it's about empowering our customers to achieve lasting efficiency, sustainability and growth. We see ourselves as a trusted partner who stands beside them at every step – from technology deployment to ongoing support, ensuring they can rely on Fornnax not only for performance but also for consistency, dependability and long-term value.”

Siemens And rFpro Enhance Tyre-Road Simulation Technology

Siemens And rFpro Enhance Tyre-Road Simulation Technology

A new collaborative development from rFpro and Siemens Digital Industries Software (Siemens) introduces a significant advancement in simulation technology. This innovation seamlessly connects Siemens' Simcenter Tire software with rFpro's TerrainServer platform, which creates highly precise, millimetre-accurate digital replicas of real-world road surfaces. Through this integration, the sophisticated MF-Tyre and MF-Swift models within Simcenter can directly access and process the detailed terrain data. This allows for the calculation of highly realistic tyre forces and moments, which is a critical factor for virtual testing in both the automotive and motorsport industries.

The partnership was built on ensuring the solution's reliability across diverse applications, from desktop engineering to cloud-based and real-time simulator environments. This development reinforces rFpro's commitment to an open and agnostic simulation platform, providing users with the flexibility to select their preferred models and tools. This strategy of integrating best-in-class third-party technologies protects customer investments and increases their return, as digital assets can be utilised across different departments with varying modelling requirements.

The combined power of TerrainServer's high-fidelity road models and Simcenter Tire's advanced modelling enables engineers to conduct in-depth evaluations of vehicle dynamics, including handling, ride quality and grip. Performance can be assessed objectively through data and subjectively using driver-in-the-loop simulators. This comprehensive approach allows for a more informed development process, leading to better-validated designs before physical prototypes are built, thereby saving substantial time and cost. The new interface is now commercially available and is already being widely adopted by OEMs and Tier 1 suppliers globally for programmes focused on ride comfort and vehicle dynamics.

Nick Harrison, Development Director, rFpro, said, “We aim to be the most open simulation environment on the market and this integration is another key example of this. Our platform-agnostic approach means engineers can pick and choose the best tools for the job. They have the ability to combine specialised technologies from different vendors to create the most effective simulation solution for their particular development challenge.”

Willem Versteden, Senior Technical Product Manager, Siemens Digital Industries Software, said, “Tyre behaviour depends heavily on the surface it’s interacting with. By integrating our Simcenter Tire software with rFpro’s TerrainServer, engineers can now simulate that interaction with a much higher level of detail. It’s a valuable step forward for users demanding greater accuracy in virtual vehicle development.”

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

Continental and nobilia Forge Future Of Living With Smart Kitchen Concept

A groundbreaking collaboration between technology giant Continental and kitchen manufacturer nobilia is presenting a new vision for the kitchen, transforming it from a utilitarian space into an intelligent and responsive living environment. This joint innovation project, set to debut at nobilia’s international exhibition in Verl, harnesses the material science expertise of Continental’s ContiTech group, drawing directly from its advanced work in automotive interiors.

The concept, titled ‘Evolution of Senses’, showcases how functional materials can redefine everyday experiences through comfort, safety and seamless design. The core of this innovation lies in revolutionary translucent surfaces. These specialised materials are light-permeable and serve as a host for printed electronics, enabling an array of hidden functions. This technology allows a kitchen countertop to discreetly incorporate wireless smartphone charging, create specific heating or cooling zones to keep food and drinks at their ideal temperature and feature touch-sensitive control panels. All these elements remain completely invisible when not in use, preserving a clean aesthetic. This principle of surface technology is also demonstrated in a kitchen niche, where a screen is hidden behind a translucent film with a wood-like finish, only appearing when activated.

The commitment to modern living extends to sustainability, with the use of durable and resource-efficient materials. The chairs, for instance, are upholstered in an artificial leather that is composed of over 90 percent bio-based and renewable raw materials, including organically grown cotton.

Further enhancing the kitchen's intelligence are smart AI features, engineered by AUMOVIO Engineering Solutions. Adapted from Continental's automotive technology, these systems can recognise food items, offer recipe recommendations and provide nutritional insights. They also contribute to family safety by issuing alerts for potential hazards like boiling water or objects that might be dangerous for children.

While some of these technologies are production-ready and others are still in the prototype stage, they collectively offer a concrete and exciting preview of the future, where the home environment is both intuitively connected and sustainably crafted.

Ralf Imbery, Head of Design, Marketing and Strategy for Continental’s global surface materials business, said, “For many decades, our materials and technologies have shaped modern living spaces – from vehicle interiors to home furniture. With this concept kitchen, we’re showing how our expertise can be transferred to new requirements: for greater functionality, user-oriented design and technology in everyday life. For us, cooperation projects of this kind are an important strategic tool that allow us to test innovations at an early stage and, together with partners, develop new perspectives for future living environments.”

Florian Degenhardt, Head of Innovation, nobilia, said, “The collaboration with Continental is a real game-changer. It enables us to create intuitive surfaces that respond to the user while at the same time preserving the elegant design of modern kitchens.”

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA Launches USD 155,000 Challenge for Revolutionary Lunar Rover Wheels

NASA has launched a three-phase competition offering USD 155,000 in prizes to develop next-generation wheels for lunar rovers, as the US space agency prepares for sustained exploration missions to the Moon’s surface.

The “Rock and Roll with NASA Challenge” seeks lightweight, durable wheel designs capable of traversing the Moon’s harsh terrain of razor-sharp regolith whilst maintaining performance in extreme temperature variations and carrying substantial cargo loads at higher speeds.

The competition addresses critical mobility challenges facing future lunar missions, where traditional rover wheels have struggled with the Moon’s abrasive surface materials and temperature extremes that can plummet to minus 173 degrees Celsius during lunar nights.

“The next era of lunar exploration demands a new kind of wheel – one that can sprint across razor-sharp regolith, shrug off extremely cold nights, and keep a rover rolling day after lunar day,” NASA stated in announcing the challenge.

The programme unfolds across three distinct phases. Phase 1, which opened on 28 August and runs until 4 November 2025, will reward the best conceptual designs and analyses. Phase 2, scheduled for January through April 2026, will fund prototype development. The final phase in May-June 2026 will test leading designs through live obstacle courses simulating lunar conditions.

For the concluding phase, NASA will deploy MicroChariot, a 45-kilogram test rover, to evaluate top-performing wheel designs at the Johnson Space Centre Rockyard facility in Houston, Texas. The testing ground will simulate the challenging lunar terrain that future missions must navigate.

The competition remains open to diverse participants, from university student teams and independent inventors to established aerospace companies, reflecting NASA’s broader strategy of engaging private sector innovation for space exploration technologies.

NASA mobility engineers will provide ongoing feedback throughout the competition phases, offering participants insights from the agency’s extensive experience in planetary rover operations, including successful missions to Mars.

The challenge comes as NASA intensifies preparations for the Artemis programme, which aims to establish a sustained human presence on the Moon and serve as a stepping stone for eventual Mars exploration missions.

Current lunar rover designs have faced limitations in speed, cargo capacity, and durability when operating across the Moon’s challenging surface conditions, creating demand for breakthrough mobility solutions that can support extended surface operations.

The competition timeline positions Phase 2 prototype funding to commence in January 2026, allowing successful Phase 1 participants several months to refine their concepts before advancing to hardware development.