Henkel And 4JET Collaborate To Introduce New Process For Producing Silent Tyres For EVs

Henkel And 4JET Collaborate To Introduce New Process For Producing Silent Tyres For EVs

Henkel and 4JET have joined hands to introduce a new process for producing silent tyres for electric vehicles (EVs). In the new LASER-FIT process, a tailor-made acoustic foam is produced directly inside the tyre from liquid starting materials, at the end of the tyre line.

The current process of making silent tyres carries along with it a number of overheads, namely a second logistics line to transport the lightweight but high-volume foam to the ‘tyre wedding’ at the end of the production line, multiple stages of intermediate storage for the foam and several additional manual or semi-automatic steps for logistics, cutting, adding adhesives and foam insertion into the tyre. Also, the appropriate foam must be provided ‘just-in-sequence’. This process increases the cost of production by up to 25 percent and leaves us with significant volumes of waste generated from the off cuts of the foam pieces.

The new direct-foam-to-tyre process aims to eliminate all these hassles. With the LASER-FIT process, you don’t need to worry about the ‘just-in-sequence’ complexity, time-consuming logistics and manual process steps. Moreover, it also provides greater freedom in adapting the foam’s geometry and volume to the tyre type, thereby reducing waste generation. This process is made possible using patented foam activation process using a laser after the application of foam. The foam forms an air-impermeable skin on the surface, which minimises the penetration of sound into the open-pored acoustic foam and prevents sound absorption.

The process concept was presented at TireTech in Hannover this March and the complete solution will be presented at RubberTech24 in Shanghai this month.

Dr Rainer Schönfeld, Global Market Strategy Head in Henkel`s Automotive Component business unit, explains, “Our new to market Loctite LASER-FIT acoustic foam achieves its sound absorption effect through a large inner surface and a pore design specifically tailored for tyre noise suppression. Without 4JET`s laser activation process, which precisely removes the foam skin, the majority of sound waves would be reflected off the foam surface instead of being absorbed. This great idea is a prime example of the innovative strength of German SMEs, which continue to be the engine of our economy!”

George Kazantzis, Global Head of Henkel`s Automotive Components business unit, adds: “This revolutionary direct-foam-to-tyre technology represents our joint commitment to innovation and sustainability. By eliminating the transportation of pre-fabricated foam and reducing cutting waste, we will enable our customers to lower their carbon footprint.”

Dr Armin Kraus, Co-CEO of the 4JET Group, stated: “In Henkel, we have found the ideal development partner for this innovation. Henkel combines expertise in the development of technically sophisticated PU foams with their mechanical application like few companies in the world. At the same time, Henkel has the necessary industry knowledge in the automotive industry as well as the global footprint required to reliably supply the tyre industry worldwide with products of consistently high quality. We witnessed this. What impressed us most was the passion and speed with which Henkel works. From the idea to the finished application in record time: we will be presenting our joint complete solution at RubberTech24 in Shanghai this month.”

Comments (0)

ADD COMMENT

    Hankook Tire introduces Design Innovation 2020 project

    Hankook Tire introduces Design Innovation 2020 project

    Hankook Tire revealed the Design Innovation 2020 project, which defines a vision for the future driving and innovation in mobility.

    Launched in 2012, the Design Innovation is Hankook’s R&D project held every two years, in collaboration with one of the world’s leading design universities.

    Under the theme ‘Urban Reshaping’, professors and students from the Department of Industrial Design at the University of Cincinnati in the U.S. focused on the transformation of cities geared by reconfiguring mobility as part of living spaces rather than stand-alone purpose in the future with augmented automation infrastructure and cutting-edge technologies such as eco-friendly technology, autonomous driving and Artificial Intelligence (AI).

    Throughout the project, modular platform of mobility concept named ‘Hankook Platform System (HPS)-Cell’ was proposed with tyre representing the root of mobility. It is applied with ‘Hankook Electric Mobility Technology (H.E.M.)’ which represents Hankook’s passion for future technological breakthroughs. Then a scenario was created which distinguishes mobility as a moving platform and its function as a pod (space), clearly elaborating that tire indeed sits at the center of the mobility.

    The tyre of HPS-Cell embodied an airless tyres’ double-layered unit-cell structure to acquire complex rigidity. It is a concept tyre that uses sensor technology to not only identify tire treads and road conditions in real time, but also to respond to wear-out risks and change tread patterns according to the road condition utilizing variable wheels and optimized infrastructure.

    The scenario was brought into reality in a concept film and a mock-up. The productions suggest that in 2040 urban population will be able to use this mobility platform combined with pods of various forms to each meet a specific purpose. The modular platform can also be combined with commercial pods such as urban farming to maximize the scalability and efficiency of movement within smart cities of future generation.

    The unveiled productions will be exhibited at various global channels and will represent Hankook’s capabilities in design innovation globally.

    Jimmy Kwon, Vice President of Hankook Tire Brand Lab said, “Hankook Tire is incorporating new ideas with our cutting-edge technology to explore design concepts for the next generation, as Hankook believes creativity is the first step towards bringing the imagination into the reality. We are more than excited to present this year’s works as they speak for the essence of the future mobility that Hankook envisions.”

    Comments (0)

    ADD COMMENT

      TATNEFT Develops New AVT Tyre Line

      TATNEFT Develops New AVT Tyre Line

      TATNEFT has announced the development of a new line of ATV tyres called the KAMA Quadro ATM. The first model has been made in 25x8-12 standard size at its Nizhnekamskshina factory in Russia.

      The ATV tyre, which is developed by Kama Scientific and Technical Center, has been specially designed for off-road driving, providing excellent cross-country ability in mud and snow. The tyre’s special rubber composition ensures high reliability and traction performance.

      The first batch of tyres will go for pilot testing to TATNEFT subdivisions that operate off-road special vehicles.

      The KAMA Quadro ATM range is currently being developed in nine tyre sizes covering 12 to 14 inches diameter, with nine more sizes coming up over the next year. The factory will begin production of 25x10 tyres for the rear axle in addition to the already manufactured  25x8 tyres intended for the front axle.

      The KAMA Quadro ATM will meet the needs of the TATNEFT Group’s all-terrain vehicles used in oil fields and will also be used to equip Russian ATV manufacturers and the secondary market. (TT)

      Comments (0)

      ADD COMMENT

        Kumho Tyre Aces Summer Tyre Test Over 52 Opponents

        Kumho Tyre Aces Summer Tyre Test Over 52 Opponents

        Kumho tyres have outperformed 52 rival manufacturers to ace the Auto Bild magazine’s summer tyre test with its ECSTA HS51 high-performance pattern tyre.

        The annual test is among the most comprehensive of its type, the results of which are regarded as highly significant by both the European tyre trade and its consumers.

        Conducted on both wet and dry surfaces, it left Kumho in a fighting third place overall. However, while the further qualifications caused the two leaders to slide down the order, 33 of the 53 entries were eliminated by the initial braking test. Kumho’s highly competitive and consistent scores in almost every discipline ultimately left it as the sole test winner.

         Awarding the ECSTA HS51 their coveted ‘Exemplary’ badge, the Auto Bild testers commended it for its precise steering response, secure wet grip, well-balanced handling, short braking distance, low wear rate and affordable price.

        Unlike some tyre tests, where the products are supplied by the manufacturers, those for the Auto Bild ones are covertly purchased by the magazine from regular retail outlets. The chosen size was 205/55R16, the direct fitment for the bulk of Volkswagen Golfs and Audi A3s etc., and therefore arguably the one most common within the European car market.

        UK purchasers currently have the choice of 35 sizes of ECSTA HS51 for wheels of 15 to 18 inches in diameter. The qualification round of the test was carried out at ATP (Automotive Testing Papenburg) in Germany and the other tests were performed at the IDIADA facility in Spain. 

        Comments (0)

        ADD COMMENT

          Tire Leap AI Analysis Technology: An Overview

          • by 0
          • June 25, 2020
          Sumitomo Rubber Becomes OE Tyre Supplier for Toyota All-new Alphard and Vellfire

          Thus, our newly developed "Tire Leap AI Analysis" utilises advanced AI-based analysis technology to analyse (for example) electron microscope imagery of tyre rubber compounds in order to achieve high-precision analysis that far exceeds human capabilities, thereby making it possible to derive accurate estimates of rubber properties from structural data found in this imagery.

           

          Specifically, it is a technology that estimates rubber properties precise from combining data on the individual raw materials contained in a rubber compound with data on its internal structure. In the future, we will continue to develop this technology and develop technology to estimate the future rubber properties from electron microscope imagery of unused rubber.

          ■ Technology to Precisely Estimate Rubber Properties Based on Structures & Materials

           

          Tire Leap AI Analysis utilises an AI-based image analysis system to analyse the internal structures of rubber in images captured by an electron microscope in order to infer information about the properties of the rubber based on its structural data (i.e. the results of image analysis). By combining this structural data with data about the materials that make up rubber compounds, this technology is then able to derive information about the physical properties of rubber with a high degree of precision.

          ■ Technology to Detect Changes in the Internal Structures of Rubber After Use & Estimate Resulting Changes in Rubber Properties

          By comparing images of a tyre that has never been used (i.e. that is brand new) with images of a tyre that has been used (i.e. after wear over time), this AI-based image analysis system can determine where changes have occurred in the internal structures of the tyre’s rubber and then estimate the physical properties of the rubber in the areas that have undergone these changes. The practical application of this technology will facilitate the design of new rubber compounds that are less prone to performance degradation due to wear and tear, thus contributing to the development and advancement of Performance Sustaining Technology.

          Dr. Miki Haseyama, Hokkaido University: We have developed a new AI technology that is able to estimate the extent of changes in the structures based on analysis of images of the internal structures of rubber. As compiling data for this kind of machine learning would otherwise be extremely time-consuming, one of the main merits of this new technology is the fact that this AI does not require prior field data from structural changes in rubber for machine learning. Rather, this AI uses deep learning to learn about the properties of new rubber (i.e. prior to undergoing structural changes) and then estimates the extent of changes in the structure by analysing how data from old rubber (i.e. after undergoing structural changes) compares to the data that it has previously learned about new data. This approach to machine learning allows the AI to automatically detect various types of changes in the structures of rubber.

          Kiyoshige Muraoka, Senior Executive Officer, Sumitomo Rubber Industries: We have been working jointly with Hokkaido University to further advance the development of AI technology that can understand how the internal structures of tyre rubber change through use. We have already put this new technology to use in the development of our latest “ENASAVE NEXT III” fuel-efficient tyres, which not only achieve the highest possible “AAA-a” rating for fuel efficiency and wet grip performance (under Japan’s tyre labelling system), but also reduce changes in tyre performance that occur over time as a result of use by half. Moving forward, we will continue to advance our Tire Leap AI Analysis technology to find and analyse slight variations in the internal structures of rubber that human senses and knowhow have been unable to detect so that we can then use the resulting knowledge to develop new technologies that further enhance tyre performance and ensure that this high performance lasts longer. In this way, we will accelerate research and development toward producing high-performance tyres that provide greater safety and peace of mind with the aim of contributing to the realisation of a sustainable mobility society for future generations.

           

          References:

          Ren Togo, Naoki Saito, Takahiro Ogawa, Miki Haseyama, “Estimating regions of deterioration in electron microscope images of rubber materials via a transfer learning-based anomaly detection model,” IEEE Access, vol. 7, pp. 162395-162404, 2019.

          Comments (0)

          ADD COMMENT