Reducing Carbon Footprint through Rubber Cultivation

  • by 0
  • April 22, 2020
Reducing Carbon Footprint through Rubber Cultivation

By Dr Sunil E Fernando

The natural rubber tree converts a greenhouse gas to a hydrocarbon. It is also capable of delivering it in commercially viable quantities almost on a daily basis, unlike any other. In addition, it retains some carbohydrates produced over a 30-year period, as medium density hardwood. This natural process of the biosynthesis of two products not only sustains the farmer, but also reduces the impact on global warming to some extent due to carbon dioxide extraction. Thus, preserving existing rubber plantations and cultivating more, especially in marginal lands, will help to mitigate an imbalance created due to the production of excessive quantities of a greenhouse gas

Benefits of Growing Rubber: Hevea brasiliensis or the rubber tree began its epic journey in 1875, when Sir Henry Wickham brought 70,000 seeds from Rio Tapajos in the upper Amazon to Kew gardens in London. Of these, 1911 seedlings were planted in Gampaha botanical gardens, Sri Lanka, initiating an agricultural revolution in South East Asia and an industrial revolution globally. Apart from giving 14 million tons of Natural Rubber (NR) consumed annually worldwide, the tree has other attributes listed below.

 Extracting 24.9 kilograms of Carbon dioxide (CO2) Greenhouse gas (GHG) to produce one Kilogram of latex

 Yielding 2.1 cubic meters/tree of wood from GHG as biomass, every 30-year cycle

 Produce easily biodegradable litter, compared to monocultures like Teak

 Require less chemical fertilisers, water and pesticides

 Retains biodiversity as a tropical plant and co-exists with other species allowing for intercropping

The uniqueness of the rubber tree is its ability to fix CO2 almost instantaneously into a hydrocarbon on a daily basis, with water and energy from sunlight while nature took millions of years converting biomass to a hydrocarbon, Petroleum. The tree is a natural solar panel trapping energy from the Sun, propagating a chemical reaction giving a hydrocarbon, while releasing Oxygen to the atmosphere and accumulating a timber resource. Tapped from year 5, the tree removes a GHG every other day, unlike any other plant species, for 11 months of the year for 25 years.

Why Excess CO2 is bad

CO2 present in the atmosphere is a double-edged sword. "CO2-Earth" reports, its concentration increased from 330 ppm in 1975 to 408.55 in September 2019, and further to 410.27 in November 2019. CO2 absorbs Infrared radiation (heat radiation) from the Sun through molecular vibrations, and emit this energy unlike gases like Nitrogen and Oxygen. Ozone, Methane and Nitrous Oxide are other GHG's, which absorb energy from the sun and similarly emit heat, warming the atmosphere.

However, GHG's maintains atmospheric temperatures without converting Earth into an ice ball. Nevertheless, high concentration of GHG in atmosphere, emit more heat to sustain global warming due to an imbalance created by excessive human activity like burning fuel, rearing of cattle/sheep, giving-off excessive CO2 and Methane, respectively. Two confirmed methods to lower ill effects of GHG are, produce less and increase plant cover.

CO2 is the raw materials for all forms of Carbohydrates, Proteins and Fats produced by plants providing for growth and energy in life forms. What is alarming is the excess CO2 produced, accumulating in the atmosphere, and in Oceans. Dissolved CO2 in seawater, raises temperature and forms Carbonic acid, increasing Ocean acidification. Ocean acidification reduces the ability of sea creatures to fix Calcium as Calcium Carbonate, another form of Carbon sink.

Carbon Dioxide Accumulation Antoine Lavoisier said, in a chemical reaction matter is neither created nor destroyed. Producing GHG through human intervention, new matter is not created but it leads to an unsustainable imbalance of matter in the environment. This is what causes the problem.

Figure 1. Representation of the CO2 Cycle

Figure 1. Figure 1. Representation of the CO2 Cycle (https://serc.carleton.edu/eslabs/carbon/2a.html)

CO2 is a GHG not only produced by burning fuels and biomass. Humans exhale One Kilogram of it daily. Increase in population does not increase CO2, as exhaled balances out by inhaling. But when human population went up from 1 billion 200 years ago to 7 billion now, increase in human activity led to an imbalance in the atmosphere and the Oceans due to release of CO2 and Methane. Biomass generation too is dwindling due to the population pressure. Thus, this imbalance of accumulating matter capable of absorbing heat is the main reason for global warming.

Biosynthesis of Natural Rubber About 2000 plant species produce NR, but Hevea brasiliensis produce commercially exploitable dispersion in water as latex. The biological reason for NR production is not clear, but it may prevent pathogenic microorganisms entering the tree. Latex is found in horizontally arranged interconnected cells called laticifer, in the bark of the tree, High yielding plantations with about 400 trees per hectare have reported a production of 2500 Kg/NR /Year. The theoretical yield potential is estimated at, 7,000 to 10,000 kg/Ha/Year. A tree giving 15 to 30g of rubber per day, tapping on alternative days yields 2.2-4.5 Kg of NR per year. According to Apollo Vredestein R and D, on average 1.9 Kg of NR goes into a tire and a tree produces enough rubber to make 2 tires per year or 50 in lifetime.

Plants take in CO2 for survival. Some converts part into an edible form, as carbohydrate and fats while the rest is converted to forms like cellulose. These may end up as wood, becoming a Carbon sink for a length of time. In rubber trees, the process extends converting part of CO2 to a rubber hydrocarbon containing Carbon and Hydrogen, more akin to Petroleum. This wonder tree makes a hydrocarbon in few minutes, while nature took millions of years to convert biomass derived from CO2 to Petroleum.

Figure 2 Representation of the Formation of IPP through MVA
and Non-MVA Pathways (Chiang. C. C. K, 2013, PhD Thesis,
the Graduate Faculty of the University of Akron).

The biosynthetic pathway for NR in Hevea begins with the monomer precursor, Isopentenyl pyrophosphate (IPP). IPP is an adduct of Pyrophosphoric acid and Isoprene monomer. However, IPP is not an uncommon material, limited to Hevea, but is formed from carbohydrates, in other plants, algae, bacteria, in mammals and humans. The formation of IPP is said to occur by following two pathways; Mevalonate (MVA) or non-mevalonate (non-MVA), deoxy-xylulose pathway. In rubber trees, breakdown products from carbohydrates like Pyruvates and Glyceraldehydes are transformed into IPP, in Cytosol in Cytoplasm/Plastids in plant cells, in several stages in the presence of many enzymes like mevalonate kinase (MVK) and mevalonate diphosphate decarboxylase (MVD). Figure 2.

Figure 2 Representation of the Formation of IPP through MVA and Non-MVA Pathways (Chiang. C. C. K, 2013, PhD Thesis, the Graduate Faculty of the University of Akron).

On isomerisation with enzyme, Isomerase IPP is converted to Dimethyl allyl pyrophosphate (DMPP). IPP and DMPP are building blocks for diverse groups of bio-molecules like Cholesterol, Vitamin K, Coenzyme Q10 (CoQ10) and Cis-polyisoprene (NR). Figure 3

Figure 3 Pathway to NR Biosynthesis

Figure 3 Pathway to NR Biosynthesis

In rubber producing Russian dandelion (Taraxacum koksaghyz Rodin), enzyme transformation of sugars enrich NR formation. In the summer months, dandelions produce excess sugars and store it as Inulin. The possibility of metabolic engineering assisted enzyme degradation of Inulin to enhance production of IPP and then to NR has been explored for dandelion. Meanwhile Researchers have succeeded in decoding the Genome sequence in Hevea. This can lead to high yielding rubber clones, by locating genes responsible for biosynthesis of rubber.

Latex with 30% NR and 5% non-rubbers is produced in special cells called laticifers located horizontally and a lateral cut of the bark exposes most number, giving latex. Since the laticifer density is genotype dependant determining latex yield, it can give the direction for biologists as a selection marker for high yielding clones. In older rubber trees chemicals inducing Ethylene formation in the bark-tissue or generated it in situ like 2-Chloroethylphosphonic acid, are used as yield stimulants. Such developments, together with appropriate nutrition infusion, can increase NR yields, making rubber cultivation attractive to farmers.

Chloroethylphosphonic acid

Hevea brasiliensis is a dual-purpose tree, making Carbon sinks from CO2 in two ways, as a hydrocarbon and as wood, extracted in a 30-year cycle. Plants like wheat and rice also fix CO2 to give edible Carbohydrates, often twice a year. Nevertheless, human/animal consumption of edible carbohydrates quickly gives CO2 back to the environment. Thus with respect to environmental benefits, producing NR by growing rubber trees is a more favourable option. Fortunately, rubber cultivation has increased from 9.9 in 1975 to 14.0 million hectares in 2018 giving these benefits worldwide.

Preserving and enhancing rubber cultivation

The rubber farmer does a silent service by extracting latex and thus removing substantial quantity of GHG on a daily basis. As NR based products stay longer in service, Carbon in it remains intact for a longer period without burdening the environment. Each tree has the uncanny ability to function as a tap, working 150 days a year to clean up the environment unlike other plant-based options. It leaves a raw material as timber derived from GHG, extracted in every 30-year cycle giving 50 Kg of wood/tree. The global potential for wood at a replanting rate of 3% of acreage annually is, approx 7.30 Mn Tons/ year.

The environmental benefits can be maximised if the farmer taps the tree every other day for 11 months of the year if their livelihood is secularly safeguarded. Going into alternatives for from existing land is counterproductive to the environment. The negative process will occur only if the farmer finds the daily sustenance by growing rubber becomes a hard task. To encourage the farmer, requires a collective and a concerted effort from:

 Buyers giving stable/reasonable price

 Biologists developing fast growing, high yielding, drought and disease resistant trees

 Cultivation experts developing new and less-laborious extraction techniques and attractive intercropping practices

 Technologists adding value to existing NR products and developing new products

• Chemists by modification to give new elastomeric materials from NR as raw materials for other processes

• Environmentalists by increasing international awareness of the benefits of growing rubber

With respect to increased appreciation of the capability of modified NR forms, an enterprising tire manufacturer uses Epoxidised NR/Silica combination in automobile tire treads, to give higher wet grip and low rolling resistance tires. Such greener tires used in hybrid and electric cars, made these vehicles more environmental friendly. Olefinic elastomers like NR, contains reactive double bonds with potential to be modified as raw materials in many applications. Table 1, Figures 4 and 5. Such developments will give impetus to the sustainability and growth of an industry, benefitting the rubber farmer while fixing more GHG as well.

Figure 4 Possible Derivatives from Epoxidised NR
(Polgar. L.M, ‘Chemical modification of hydrocarbon elastomers, Progress in Polymer Science, 2016)

 

 

 

 

 

 

 

 

 

Figure 5 Routes for Oxidation of Natural Rubber
showing New Products Potential
(Polgar. L.M, ‘Chemical modification of hydrocarbon elastomers, Progress in Polymer Science, 2016)

 

ENDS

References:

1. Bhowmik. I (2006), Tripura Rubber Mission Technical Bulletin 2. https://www.co2.earth/

3. Rao. P. S, et.al (1998), Agricultural and Forest Meteorology 3, 90

4. Chiang. C. C. K (2013), Natural rubber biosynthesis, PhD Thesis, The Graduate Faculty of The University of Akron, USA 5. Decoding the rubber tree genome, https://www.sciencedaily.com/releases/2016/06/160624100225.htm

 

 

Dr Sunil E Fernando is Former Executive Director, DPL Group, Sri Lanka, Managing Director Dipped Products (Thailand) Limited, Former Director, DPL Plantations and Kelani Valley Plantations Limited, Sri Lanka, and a Consultant - Latex Products

Comments (0)

ADD COMMENT

    STC Opposes Proposed Santa Clara County Turf Ban

    STC Opposes Proposed Santa Clara County Turf Ban

    The Synthetic Turf Council (STC) has expressed strong opposition to the proposed motion to ban synthetic turf in Santa Clara County. Melanie Taylor, President and CEO of the organisation, submitted a testimony in this regard to the Santa Clara County Board of Supervisors, highlighting the significant environmental and community benefits of synthetic turf while addressing concerns related to safety and accessibility.

    There was strong resistance to the proposed turf ban from parents, football players and business owners when the Santa Clara County Board of Supervisors last discussed the proposal in August. In fact, several of these people spoke out against the proposed turf ban at a Board meeting on August 13. Seventy-five percent of public remarks were about synthetic turf, despite the fact that it was not on the official agenda that day. Notably, pro-turf speakers exceeded anti-turf ones by a 2:1 ratio.

    Over the last few months, STC has taken a number of initiatives to express its strong objection to the prohibition. Before the Board tabled the proposal to limit turf usage throughout the county for reconsideration in January, Taylor sent written evidence to the Board in August. In an article arguing against the proposed ban before to that August hearing, STC emphasised the industry's dedication to coming up with creative ways to preserve fields nearing the end of their useful lives and guaranteeing the safety of its goods by removing purposefully added PFAS from synthetic grass.

    Taylor said, "Recreational fields are more than just playing surfaces, they are essential community infrastructure. Families, schools and businesses choose synthetic turf because it provides year-round access to affordable, durable and eco-friendly fields, especially in drought-prone states like California. A ban on turf in Santa Clara County will only hurt communities by depriving them of these long-term benefits and cost savings that turf uniquely provides."

    Comments (0)

    ADD COMMENT

      ANRPC Publishes Monthly NR Statistical Report For December 2024

      ANRPC Publishes Monthly NR Statistical Report For December 2024

      The Association of Natural Rubber Producing Countries (ANRPC) has released its Monthly NR Statistical Report for December 2024.

      According to the report, robust market fundamentals and increased trading activity brought on by year-end orders before the Lunar New Year holidays in January helped to somewhat raise the average monthly prices for natural rubber (NR) in December. But because of poor economic conditions, this increasing trend – which was first fuelled by China's stimulus measures, which were implemented in late September – lost steam. Furthermore, ongoing threats from US tariffs impacted market stability and caused anxiety.

      With more import orders and more rubber coming from Thailand as a result of less rainfall, China's natural rubber stockpile began to grow by the middle of December. Although there were some encouraging advances overall, the report also notes that the market continues to face the previously highlighted difficulties that might affect future price stability.

      With the revision on Indonesian and Cambodian output, the prognosis for worldwide NR production in 2024 is up 2.8 percent from the previous year, according to the performance and updates from ANRPC member countries (AMC). With the change from Indonesia and Malaysia, the global demand growth projection for 2024 is up 1.8 percent.

      Comments (0)

      ADD COMMENT

        Evonik Forms Smart Effects Unit by Merging Silica, Silane Lines

        Evonik Forms Smart Effects Unit by Merging Silica, Silane Lines

        Evonik Industries AG launched Smart Effects, a new 3,500-employee entity combining its silica and silane operations, as the German speciality chemicals maker pushes further into sustainable technologies.

        According to a company statement, the unit began operations on 1January, will be part of the company’s Advanced Technologies division and target the automotive, electronics, consumer health, and building materials markets.

        “This merger not only enhances our customer relationships but also allows us to advance sustainability in key markets,” said Emmanuel Auer, who heads the Smart Effects business line.

        The combined unit will supply materials for electric vehicle batteries and semiconductors while developing new technologies, such as adsorbents for direct air capture of carbon dioxide. Its silica-silane combinations are already used in fuel-efficient “green” tyres.

        “The new business line is a strategic step by Evonik to strengthen the financing power of our complementary Silanes, precipitated and fumed Silica technology platforms,” stated Lauren Kjeldsen, President of Smart Materials Division at Evonik. “By combining our expertise in molecular silane chemistry and silica particle design, we can deliver differentiated solutions that add value to our customers with a tailored portfolio approach.”

        “With Smart Effects, we aim to go beyond in industry,” Auer concluded. “Our goal is to deliver value for our customers by innovative, complementary technologies based on molecules and particles, driven by circular solutions and sustainable effects in applications.”

        Smart Effects will maintain local sales teams and tech centers serving customers in over 100 countries, supported by manufacturing facilities across six continents, the company said. The merger aims to streamline innovation in joint applications and technical processes.

        Evonik developed surface-modified silica carriers with amino silanes that can extract CO2 from the atmosphere as part of its sustainability push. The company said the new structure will help accelerate similar innovations targeting environmental challenges.

        Comments (0)

        ADD COMMENT

          Hyosung Advanced Materials Seeks $1 Billion Sale of Tire Cord Unit, reports Korea Economic Daily

          Hyosung Advanced Materials Seeks $1 Billion Sale of Tire Cord Unit, reports Korea Economic Daily

          Citing people who are familiar with the matter, the Korea Economic Daily reported that HS Hyosung Advanced Materials Corp. is exploring a sale of its tyre steel cord business that could fetch about 1.5 trillion won ($1 billion).

          According to the report, the South Korean manufacturer plans to kick off a preliminary bidding process by the end of February. The people asked not to be identified because the information is private.

          The unit generates about 40 percent of the company’s profit. Its sales were 860 billion won last year, and its EBITDA was 140 billion won.

          The potential divestment is part of a broader push by Vice Chairman Cho Hyun-sang to pivot toward growth areas including electric vehicle materials, hydrogen and artificial intelligence. Cho, who leads HS Hyosung Group after its spinoff from Hyosung Group in July, is the founder’s third son.

          HS Hyosung is the world’s only producer of all three major tyre reinforcements: steel cord, nylon tyre cord, and polyester tyre cord.

          The steel cord unit, which bundles thin wires to help tyres absorb shock and improve ride comfort, holds leading market positions in North America and Europe.

          A representative for HS Hyosung declined to comment, added the Korea Economic Daily.

          Tyre cords are crucial components that enhance tyre durability and driving performance by maintaining shape and supporting vehicle weight.

          The company is seeking to divest the steel cord operation, which has less synergy with its core specialty fiber business, to fund investments in new ventures, the people said.

          Comments (0)

          ADD COMMENT