Tyre Pressure Monitoring System (TPMS)

  • by 0
  • June 24, 2020
Tyre Pressure Monitoring System (TPMS)

Tyres do not typically carry the weight of our vehicles but it is only the air inside them does. There are three basic elements which determine the load capacity of a tyre namely, the size of the air chamber formed between the tyre and wheel, the strength provided by the engineering construction of tyre to hold air pressure, and the amount of air pressure actually in the tyre.

Fig No 1

Most flat tyres or zero pressure air  are the result of slow leaks that go unnoticed and allow the tyre's air pressure to escape over time (Fig.1). Therefore, monitoring tyre air pressure in real-time is extremely important. Fortunately, in these days we practically have such devices inbuilt in tyre, called, Tyre Pressure Monitoring System or TPMS, Fig.2. Run Flat Tyres (RFT) are typically designed passenger car tyre or light truck tyres or SUVs to run even when they are flat  or when there is zero inflation pressure. It is more of a safety issue - it's design allows you to continue driving in deflated condition to a point were you can safely get the tyre changed or repaired. To all RFT, therefore, it is was required to fit in TPMS system (Fig.2) to indicate driver that the tyre is running with low pressure or tyre is failed and is under zero pressure now.

Fig No 2

Tyre pressure sensor (pressure transmitter) converts the physical quantity 'tyre pressure' into an industry-standard signal , that enables the driver if the tyre pressure is becoming low or the tyre has already failed during driving (Fig.2). Mandates for TPMS technology in new cars have been continued to proliferate in the 21st century in Russia, the EU, Japan, South Korea and many other Asian countries. As of November 2014, the above fitment rate stands had been to ~ 54% of passenger cars.

 

Tyre pressure has profound influence on vehicle safety and efficiency. Tyre-pressure monitoring (TPM) was first adopted by the European market as an optional feature for luxury passenger vehicles in the 1980s. The first passenger vehicle to adopt TPM was the Porsche 959 in 1986, using a hollow spoke wheel system. In 1996 Renault used the Michelin PAX system. In the United States, TPM was introduced by General Motors for the 1991 model year for the Corvette in conjunction with Goodyear run-flat tyres. The system uses sensors in the wheels and a driver display which can show tyre pressure at any wheel, plus warnings for both high and low pressure (Fig.2). It has been standard on Corvettes ever since.

The dynamic behavior of a pneumatic tyre is closely connected to its inflation pressure. Key factors like braking distance and lateral stability require the inflation pressures to be adjusted and kept as specified by the vehicle manufacturer. Extreme under-inflation can even lead to thermal and mechanical overload caused by overheating and subsequent, sudden destruction of the tyre itself. Additionally, fuel efficiency and tyre wear are severely affected by under-inflation. Tyres do not only leak air if punctured, they also leak air naturally (air permeability), and over a year, even a typical new, properly mounted tyre can lose from 3 to 9 psi, roughly 10% or even more of its initial pressure.

Fig No 3

Maintaining proper tyre inflation is essential to vehicle handling, overall tyre performance, and load carrying capability. A properly inflated tyre will reduce tread movement, reduce rolling resistance, and increase water dispersion. Reduced tread movement gives the tyre a longer tread life. Reduced rolling resistance, the force required to roll a loaded tyre, results in increased fuel efficiency. Increased water dispersion decreases the possibility of hydroplaning. Both over-inflation and under-inflation can cause premature tread wear and possible tyre failure. Over-inflation can result in decreased traction and the inability to absorb road impact. Overinflated tyres will show premature wear in the centre of the tread. On the other hand, under inflation will cause sluggish tyre response, decrease fuel economy, excessive heat buildup, and tyre overload. An under inflated  tyre will show premature wear on both outside shoulders (Fig.3).

 

The European Union reports that an average under-inflation of ~ 6psi ,  produces an increase of fuel consumption of 2% and a decrease of tyre life of 25%. The European Union concludes that tyre under-inflation today is responsible for over 20 million liters of unnecessarily-burned fuel, dumping over 2 million tones of CO2 into the atmosphere, and for 200 million tyres being prematurely wasted worldwide. In 2018, a field study on TPMS shows that TPMS fitment reliably prevents severe and dangerous under-inflation and hence yields the desired effects for traffic safety, fuel consumption and emissions. The above study also showed that there is no difference in effectiveness between dTPMS and iTPMS and that the TPMS reset function does not present a safety risk.

The Tyre Pressure Monitoring System (TMPS) is an electronic system in the vehicle that monitors tyre air pressure and alerts the driver when it falls dangerously low. This system involves a pressure sensor (Fig.4) fitted in tyre air filling valve. However, a given TPMS system can only work with compatible sensors in the tyres.  

 

Fig No 4

TPMS notifies on vehicle dash board when vehicle’s tyre pressure is low or is going flat and this help to maintain proper tyre pressure (Fig.2). TPMS can directly or indirectly, increase vehicle safety on the road by improving your vehicle’s handling, decreasing tyre wear, reducing braking distance and bettering fuel economy. The significant advantages of TPMS are summarized as follows:

  • Fuel savings: For every 10% of under-inflation on each tyre on a vehicle, a 1% reduction in fuel economy will occur. In the United States alone, the Department of Transportation estimates that under inflated tyres waste 2 billion US gallons (7,600,000 m3) of fuel each year.
  • Extended tyre life: Under inflated tyres are the major cause of tyre failure and contribute to tyre disintegration, heat buildup, ply separation and sidewall/casing break downs. Further, a difference of 10 psi in pressure on a set of duals literally drags the lower pressured tyre 2.5 metres per kilometre (13 feet per mile). Moreover, running a tyre even briefly on inadequate pressure breaks down the casing and prevents the ability to retread. It is important to note that not all sudden tyre failures are caused by under-inflation. Structural damages caused, for example, by hitting sharp curbs or potholes, can also lead to sudden tyre failures, even a certain time after the damaging incident. These cannot be proactively detected by any TPMS.
  • Improved safety: Under-inflated tyres lead to tread separation and tyre failure, resulting in 40,000 accidents, 33,000 injuries and over 650 deaths per year only in USA. Further, tyres properly inflated add greater stability, handling and braking efficiencies and provide greater safety for the driver, the vehicle, the loads and others on the road.

 

  • Environmental efficiency: Under-inflated tyres, as estimated by the Department of Transportation, release over 26 billion kilograms (57.5 billion pounds) of unnecessary carbon-monoxide (CO) pollutants into the atmosphere each year in the United States alone.
Fig No 5

A TPMS reports real-time tyre-pressure information to the driver of the vehicle, either via a gauge, a pictogram display, or a simple low-pressure warning light (Fig.2).  

TPMS can be divided into two different types – direct (dTPMS) and indirect (iTPMS). TPMS are provided both at an OEM (factory) level as well as an aftermarket solution (replacement market). TPMS is increasing consumer demand for avoiding traffic accidents, poor fuel economy, and increased tyre wear due to under-inflated tyres through early recognition of a hazardous state of the tyres.

A sensor based TPMS has a pressure monitoring sensor fixed inside the wheel and tyre  assembly(Fig.5). This is usually clamped to the wheel and constantly monitors the internal pressure of the tyre . This information is relayed to a receiving unit on the vehicle body which is connected to a processing unit in the electronics system of the vehicle. This alerts the driver to a loss in tyre pressure.

 

Fig No 6

There are two different types of systems being used today: Direct TPMS and Indirect TPMS. Direct (dTPMS) uses a sensor mounted in the wheel to measure air pressure in each tyre. When air pressure drops 25% below the manufacturer’s recommended level, the sensor transmits that information to the computer system of car and triggers your dashboard indicator light (Fig.2).

 

Indirect (iTPMS) works with Antilock Braking System’s (ABS) wheel speed sensors. If a tyre’s pressure is low, it will roll at a different wheel speed than the other tyres. This information is detected by the computer system of car , which triggers the dashboard indicator light (Fig.2). The purpose of the TPMS is to alert you when tyre pressure is too low and could to create unsafe driving conditions. If the light is illuminated, it means your tyres could be underinflated, which can lead to undue tyre wear and possible tyre failure.

Direct TPMS

Direct TPMS (dTPMS), is a directly measuring hardware-based systems. They could be fitted in each wheel, most often on the inside of the valve (Fig.6), there is a battery-driven pressure sensor which transfers pressure information to a central control unit which reports it to the vehicle's instrument cluster or a corresponding monitor. Some units also measure and alert temperatures of the tyre as well.

These systems can identify under-inflation in any combination, be it one tyre or all, simultaneously. Although the systems vary in transmitting options, many TPMS products (both OEM and aftermarket) can display real time tyre pressures at each location monitored whether the vehicle is moving or parked. There are many different solutions, but all of them have to face the problems of exposure to hostile environments. The majority are powered by batteries which limit their useful life.  A direct TPMS sensor consists of the following main functions requiring only a few external components, that is mounted to the valve stem inside the tyre:

 

  • Pressure sensor
  • Analog-digital converter
  • Microcontroller
  • System controller
  • Oscillator
  • Radio frequency transmitter
  • Low frequency receiver
  • Voltage regulator (battery management)

 

InDirect TPMS

Fig No 7

Indirect TPMS (iTPMS)  uses to detect the differing speed of revolution of a wheel with a reduced circumference, caused by a reduction in tyre pressure . There may be  dashboard icons for low pressure warning icon  or system failure icon (Fig.2). This system uses the ABS  or the Antilock Braking System of the vehicle to monitor the rotation speed of the individual wheels. If a deflation of a tyre occurs the resulting increase in wheel speed triggers the TPMS and advises the driver accordingly (Fig.7).

Advantages of the ABS based system include the fact that the system uses technology and equipment that is already fitted to the vehicle. Also there are no sensors fitted inside the wheel/tyre assembly which makes the tyre fitting process easier than the sensor based systems.

Dr Samir Majumdar, Rubber Consultant (India & Asia pacific), has served in leading tyre companies like JK Tyre, Kyoto Japan Tire, among others. He was technical and R&D head (Asia Pacific) in ExxonMobil. He has authored several research papers and technical books. smajumdar501234@yahoo.co.in

Comments (0)

ADD COMMENT

    Nouryon Completes Capacity Expansion Of Its Organic Peroxide Facility In China

    Nouryon Completes Capacity Expansion Of Its Organic Peroxide Facility In China

    Nouryon, a leading supplier of organic peroxides and a developer of organic peroxide solutions, has formally announced the completion of capacity expansion of its organic peroxides manufacturing facility in Ningbo, China.

    The company's production capacity for Perkadox 14 and Trigonox 101 organic peroxide products, which are crucial components for altering polymer characteristics and crosslinking rubbers and thermoplastics, has increased to 6,000 tonnes each as a result of this capacity expansion. Furthermore, by improving the qualities of recycled polypropylene (R-PP), these solutions can also allow consumers to employ recycled polymers in applications that were previously exclusive to virgin plastics.

    Alain Rynwalt, Senior Vice President – Performance Materials, Nouryon, said, “Nouryon is a world leader in essential ingredients for the polymer industry and this expansion highlights our dedication to supporting our customers’ growth across the entire polymer cycle. Customer interest in improving the properties of recycled polypropylene continues to rise, in line with increased consumer awareness and more stringent regulations.”

    Sobers Sethi, Senior Vice President – Emerging Markets and China, Nouryon, said, “Asia Pacific is a key region for Nouryon and our most recent expansion in China strengthens our supply position even more in this growing region. Our customers rely on our existing network of manufacturing facilities and innovative technologies, and we are pleased to build more capacity to meet growing customer demand around the world.”

    Comments (0)

    ADD COMMENT

      Trinseo To Sell Polycarbonate Technology License And Assets To Deepak Chem Tech Ltd

      Trinseo To Sell Polycarbonate Technology License And Assets To Deepak Chem Tech Ltd

      Trinseo, a speciality materials solutions provider, has signed agreements to supply its polycarbonate technology license as well as all proprietary polycarbonate production equipment in Stade, Germany to Deepak Chem Tech Ltd, a wholly owned subsidiary of Deepak Nitrite Limited, a diversified chemical intermediates company based in Vadodara, Gujarat, India.

      The combined deals are worth USD 52.5 million. Subject to significant milestones, the business anticipates receiving around USD 9 million by the end of 2024 and an additional USD 21 million in the first part of 2025. The firm has made the decision to leave Stade, Germany, with this disposal of the production assets.

      Frank Bozich, President and Chief Executive Officer, Trinseo, said, “While Trinseo recently announced its decision to exit virgin polycarbonate production, our polycarbonate technology is highly valued and the manufacturing equipment in Stade, Germany, can be utilised in India by Deepak. These are the initial steps of a strategic, collaborative partnership with Deepak, as we explore additional opportunities to leverage our technology portfolio and expand in higher-growth areas such as India.”

      Comments (0)

      ADD COMMENT

        China's Butadiene Exports Surge Amidst Supply Shortages: SCI

        China's Butadiene Exports Surge Amidst Supply Shortages: SCI

        China's butadiene exports have experienced significant growth in recent years, particularly in 2021 and 2024. According to Sublime China Information (SCI), this surge is primarily driven by supply constraints in key regions, including the US and Southeast Asia.

        Export Volume and Price Trends

        In 2021, China's butadiene exports reached a historic high due to a supply gap in the US market. According to SCI, this trend continued in 2024 as reduced deep-sea cargo shipments and production challenges in Southeast Asia further tightened global supplies. From January to September 2024, China's total butadiene exports surged by 111 percent year-over-year to approximately 120.8 kilo tonnes.

        The average export price of butadiene has fluctuated over the past five years. In 2023, weak demand in South Korea and competition from deep-sea cargoes led to a significant decline in export prices. However, in 2024, supply shortages from key regions drove prices to a five-year high. As of September 2024, the average export price reached USD 1,391 per metric ton, a 35 percent month-over-month increase, added SCI.

        Export Destinations and Regional Dynamics

        The majority of China's butadiene exports are directed to South Korea and Taiwan. In 2024, South Korea accounted for 74 percent of total exports, a significant increase from the previous year. This surge was driven by factors such as limited domestic supply and increased demand for spot butadiene.

        While China's butadiene exports have been strong, the long-term potential for significant growth in deep-sea exports remains limited due to established supply chains and regional demand dynamics. Most of China's exports are currently concentrated in Northeast Asia, with limited opportunities for expansion into other regions.

        Future Outlook

        SCI added that 2025 China's butadiene supply is expected to be relatively sufficient, and export volumes may increase further. However, the sustained growth of exports will depend on various factors, including downstream demand in key markets, the availability of deep-sea cargoes, and the development of new production capacities in other regions.

        Despite these uncertainties, China's butadiene industry is well-positioned to capitalize on global supply-demand imbalances and continue to play a significant role in the global market.

        Comments (0)

        ADD COMMENT

          Cabot Corporation To Increase Prices Globally For Carbon Black Products

          Cabot Corporation To Increase Prices Globally For Carbon Black Products

          Cabot Corporation, a global speciality chemicals and performance materials company, has announced through an official statement that it will raise prices globally for carbon black products sold by its speciality carbons business. The price rise will be global and will come into effect for all shipments on or after 1 December 2024, or as contracts allow.

          The company claims that the price rise is necessary owing to the impact of inflation on labour, maintenance and other production activities, as well as supply chain-related expenditures. The price increase will vary depending on the product and region.

          The statement further elaborates that these price adjustments will help the company remain a dependable, long-term provider of high-quality products and services to its consumers. Cabot also underlined its commitment to guaranteeing supply security and the best service standards for its clients, as well as providing technological and process improvements and moving forward with its environmental goals.

          Comments (0)

          ADD COMMENT