- apollo tyres
- bmw
- oe
- tyres
Covestro's New CO₂ Technology Earns 2021 European Inventor Award Nomination
- by TT News
- May 05, 2021

Covestro's Dr Christoph Gurtler and Prof Walter Leitner from Max Planck Institute for Chemical Energy Conversion and RWTH Aachen University have been nominated by the European Patent Office (EPO) as finalists in the ‘Industry’ category of the 2021 European Inventor Award for their role in developing a new technology for using carbon dioxide (CO₂).
The new technology enables climate gas CO2 to be used as a raw material for sustainable plastics and forms the basis for a large number of marketable products. The process involves deploying chemical catalysts to drive reactions between CO2 and a conventional raw material, resulting in creation of polymers in a more sustainable and economically viable way while firmly incorporating CO2 in the process.
Gurtler, who is responsible for the development of new processes and products at Covestro, said, "This nomination is an important confirmation of our efforts towards making chemistry more sustainable. It shows how crucial patents are for the development process of a technology. It is a tremendous honour to be part of the award ceremony on behalf of the interdisciplinary team from product research, process development, marketing and the many other minds driving our invention."
Covestro and RWTH Aachen University founded the CAT Catalytic Center in 2007. "The scientific community has long had the desire to be able to use carbon dioxide as a supplier of carbon for plastics. Experts have been working on this issue for nearly half a century," explains Leitner.
The main roadblock for Gurtler and Leitner's team was that CO2 forms chemical compounds only with great difficulty. The team combined industrial and academic expertise and finally achieved success by experimenting with different catalysts. The breakthrough was achieved by precisely controlling the reaction between CO2 and petroleum-based propylene oxide in the presence of a customised catalyst system. "We collaborated closely to develop the right catalyst that led us to success," explains Gurtler.
The resulting product, which was introduced to the market by Covestro under the name cardyon, is already being used to produce soft foam for mattresses, for adhesives in sports floors, padding in shoes and in car interiors. Research projects have successfully demonstrated that CO2 can also be deployed for insulating materials made of rigid foam and for surfactants.
Dr Markus Steilemann, CEO of Covestro, said, "The plastics industry can make a significant contribution to combating climate change by switching to greenhouse gas-neutral production. To achieve this, we need to break away from petroleum and use alternative raw materials such as CO2. The nomination for the European Inventor Award is an endorsement of our company as a pioneer in this field. I would like to extend my sincere congratulations to the many colleagues, including those at our partners, who contributed to the development of the innovative CO2 technology – a genuine sustainability highlight."
Gurtler and Leitner's team will compete with two other teams in the category at an online award ceremony scheduled for June 17. (TT)
- Hana RFID
- Hana Technologies
- Circular Rubber Platform
- RFID Tyre Tags
- Tyre Lifecycle Management
Hana RFID Joins Circular Rubber Platform
- by TT News
- March 19, 2025

Hana Technologies, Inc. (Hana RFID), a global leader in the design and manufacturing of embeddable RFID tyre tags, has become the first RFID company to join the Circular Rubber Platform. This development aligns with Hana RFID’s mission to drive innovation in tyre traceability and reinforces the company’s long-standing commitment to sustainability and circularity in the tyre and rubber industry.
Hana RFID has been at the forefront of RFID-enabled tyre traceability since 2005, facilitating smooth tracking from cradle to grave and promoting circularity. Hana's RFID tyre tags, which are embedded during manufacturing, provide each tyre a distinct digital identity, facilitating complete lifetime tracking from manufacture and use to recycling and reuse. Hana hopes to promote RFID usage in sustainable tyre lifecycle management by working with leading companies in the sector, which will eventually save waste and increase resource efficiency.
Using radio frequency identification (RFID) technology, an RFID tyre tag is a tiny, embedded device that tracks, monitors and controls tyres. In addition to providing smooth connection with inventory monitoring, fleet management systems and other digital applications, such as the European Digital Product Passport (DPP), these tags produce digital twins of tyres. Hana's RFID solutions empower the whole tyre ecosystem to expedite fleet management, improve inventory control, optimize maintenance, and create creative business models that increase sustainability and efficiency.
Val Peters, VP – Marketing, Hana RFID, said, “We are excited to join the Circular Rubber Platform as the first RFID company in this initiative. RFID technology is essential for advancing a circular economy in tyre manufacturing, and we look forward to collaborating with partners across the rubber sector to drive sustainability on a broader scale.”
Enrico Koggel, Co-Founder, Circular Rubber Platform, said, “RFID technology is key to enabling a circular rubber economy. RFID enables seamless tracking from production to end-of-life recycling by connecting material and production data into each rubber product. It provides traceability and easy identification and allows for smart sorting of materials and efficient recycling to ensure responsible reuse, remanufacturing, recycling and waste reduction. We are therefore very happy to announce Hana as a new member of the Circular Rubber Platform, with the technology and experience they can provide to the platform. We look forward to sharing knowledge on RFID and working out opportunities for this technology in rubber industries that require Digital Product Passports in the near future, such as footwear.”
- TÜV SÜD
- Testing Laboratory
- Electromobility
- Chemical Testing
- Comprehensive Testing
TÜV SÜD Expands Test Laboratory In Frankfurt
- by TT News
- March 18, 2025

TÜV SÜD has expanded its test laboratory in Frankfurt am Main and unveiled new testing facilities at an Open Lab Day at the site, giving customers and employees an exclusive insight into the new state-of-the-art testing environments. The expansion strengthens TÜV SÜD’s position as a leading provider of independent testing and certification services.
Car charging plugs can now be tested in the lab to assess features like weather resistance, mechanical strength and electrical safety. To guarantee the endurance and durability of charging plugs and other parts, the new lab can also conduct crash testing on them. The inclusion of performance testing for tiny batteries is another significant development. Basic functional analysis will be the main emphasis of these tests at first, but in the second part of the year, comprehensive safety and performance evaluations will be included. Similar to this, power tool testing capabilities have been greatly increased to give manufacturers an even more thorough evaluation of the calibre, robustness and safety of their goods.
The capability to ascertain the biogenic carbon content of materials is an additional highlight of the expansion. These assessments support the implementation of sustainable manufacturing methods by giving businesses evidence of the utilisation of renewable raw resources. In order to make sure that packaging and other materials fulfil the strictest safety regulations and don't leak dangerous compounds into food, the testing infrastructure for materials that come into contact with food has been increased at the same time. It's also important to note the recently added ability to evaluate welding fume filtration systems, which may undergo a thorough performance assessment and will soon be certified.
TÜV SÜD is now able to provide an even greater variety of chemical testing services to make sure that products satisfy the most recent regulatory standards thanks to the expansion of its Frankfurt laboratory. With standardised testing for compounds including PFOS, PFOA, C9-C14 PFCAs, and PFHxS, there is a special emphasis on PFAS analysis. Due to the laboratory's expansion, even more businesses may now make use of its extensive testing knowledge, which includes services related to durability testing, risk assessment and certification for a range of product categories.
Walter Reithmaier, CEO, TÜV SÜD Product Service GmbH, said, “By expanding our laboratory in Frankfurt, we are responding to growing demand for product testing and certification. Our new testing capacities will set new standards in safety, sustainability and performance. We look forward to supporting our customers with state-of-the-art testing technology and professional expertise.”
- Koala Technologies
- KTL
- Te.Sense Bloom
- non-destructive rapid tyre deflation testing
- FMVSS 110
- Kenneth Martin
- Huawei AITO
- SAIC Motor Corp
- GAC Motor
- Mike Lee
Koala Technologies Launches Non-Destructive Rapid Tyre Deflation Test
- by TT News
- March 12, 2025

Chicago-based Koala Technologies (KTL), a leading automotive testing, measurement and evaluation tools provider, has launched Te.Sense Bloom – a breakthrough in non-destructive rapid tyre deflation testing. The company has introduced the base kits starting at USD 20,000.
The solution the company claims is fully compliant with FMVSS 110 and emerging EV stability test standards. The Te.Sense Bloom allows passenger vehicle manufacturers and tyre makers to cost-effectively reuse solutions, thereby optimising test programmes while reducing waste.
Currently, the rapid tyre deflation tests often rely on a vehicle being driven over special roadway cleats at defined speeds. This method sees tyres destructively punctured and destroyed by the cleats, and internal inflation pressure is quickly reduced to atmospheric pressure. At times, these tests aim to ensure that the tyres are safely seated on the wheels post rapid deflation, wile at times it is to evaluate vehicle stability in terms of tyre failure.
The company stated that this tests however require destroying multiple tyres, not only leading to waste but may also corrupt certain vehicle dynamics tests that call for a single, targeted tyre failure.
On the other hand, with Te.Sense Bloom, the industry can use non-destructive controlled, rapid deflation for the selected tyres. Using a controllable central air ejector valve with a volume and a flow capacity that simulates a sudden tyre press loss. While the method sounds simple and frugal, the innovation lies in relation with the turn-key nature of Te.Sense Bloom. Automotive testers and engineers get a repeatable set up method, easy in-car operation and simple connectivity with data acquisition systems. As part of its comprehensive supply to Te.Sense Bloom customers, KTL even offers a wheel setup service to simplify test preparations.
The other advantage of Te.Sense Bloom is that the tyre deflation event can be triggered from inside the vehicle or remotely that further expands test scenario possibilities. It can be used for testing tyre inflation pressures up to 100 PSI and speeds up to 140 kmph (87 mph). The real-time tyre inflation data at 100 Hz has a claimed data accuracy of +/-0.1 PSI.
Kenneth Martin, Head of Tyre Testing at the Transportation Research Center, said, “We have significant experience with rapid tyre deflation tests, using all types of methods, and we’re looking forward to evaluating KTL’s Te.Sense Bloom, since it represents a turn-key, non-destructive solution. There’s definitely some baseline justification for test equipment like this because it fundamentally means consuming fewer tyres. But Te.Sense Bloom’s inherent connectivity opens some other doors also, since triggered and monitored rapid tyre deflations are becoming an area of interest for vehicle stability testing, especially in EV space.”
The first U.S.-specification kit has been delivered to the Transportation Research Center in Ohio for initial evaluations.
Being compliant with EV stability testing standards the Te.Sense Bloom is already being used by OEMs globally such as Huawei AITO, SAIC Motor Corp and GAC Motor to conduct regulatory tests such as GB/T 38796-2020 (Performance Requirements and Test Methods of Automobile Blow-out Emergency Safety Device).
Mike Lee, Founder and President, KTL, added, “Koala Technologies is excited to introduce Te.Sense Bloom into new markets, beginning in 2025. Bloom has been widely adopted for vehicle development testing in China over the last several years, becoming a must-have tool for many OEMs and key suppliers. It’s one example, among many, of an excellent, trusted, useful automotive testing device that no one knows about outside China. A part of our mission at KTL is to shine a light on some of these exciting technologies that are currently available, but not widely known. Another part of our mission is to help customers achieve their goals more efficiently and at a lower cost. We look forward to the upcoming testing at the Transportation Research Center in Ohio, and we hope that Te.Sense Bloom proves to be a good fit for automotive development programmes in the U.S and beyond.”
- Bridgestone
- Bridgestone Corporation
- Tyre and Road Wear Particles
- TRWP
- TWRP Collection
Bridgestone Develops New TRWP Collection Method
- by TT News
- March 10, 2025

Bridgestone Corporation has developed a new Tyre and Road Wear Particles (TRWP) vehicle collection method aimed at understanding the environmental impact of TRWP. The solution was also displayed at the Tire Technology Expo 2025, held in Hannover, Germany, from 4 to 6 March.
TRWP is made up of a blend of road pavement components and tread (tyre surface). In order to comprehend the particle size distribution, dispersion behaviour, and environmental impact – as well as to create effective collecting techniques – Bridgestone is actively engaged in a number of TRWP research projects. The company is dedicated to comprehending TRWP and lowering its generation through these initiatives.
Utilising the B-Mobility testing facility at the Bridgestone Innovation Park in Kodaira, Tokyo, the company has created a state-of-the-art technique that makes it possible to gather TRWP effectively. Bridgestone has used laser light scattering in conjunction with a high-speed camera to visualise the dispersion of particles like TRWP. Based on this, the company has developed a device that effectively catches TRWP and covers the whole tyre. Additionally, the technique made it possible to collect TRWP effectively in a state that removes the effects of exhaust pollutants and broken dust by employing autonomous driving and an electric car with regenerative braking.
Through the Tire Industry Project (TIP), which is part of the World Business Council for Sustainable Development (WBCSD), Bridgestone has been researching the physical and chemical properties of TRWP and their implications on the environment. In addition to the continuous co-creation and internal R&D cooperation, Bridgestone is speeding up its efforts to evaluate TRWP's environmental consequences by collecting it effectively and with a high recovery rate using its recently developed collection technology.
Comments (0)
ADD COMMENT