
According to a research report, by 2026, TMPS penetration will up to 79% and 25.26 million units be installed from the installation 16.49 million units in 2019. China will be the main growth driver for the TPMS segment
Growing legal compulsions and focus on safety, comfort and fuel efficiency will drive demand for tyre pressure monitoring systems (TPMS), says Agneta Ronceret, EMEA TPMS Manager for OEM, truck and industrial markets at ATEQ.
ATEQ is the leader in supplying a wide range of TPMS activation tools for tyre workshops and assembly lines at auto manufacturing plants across the globe. ATEQ’s TPMS range covers simple TPMS triggering tools, TPMS reset tools, complete TPMS relearn tools and more advanced TPMS diagnostic and programming tools, which can either be used autonomously or in combination with an OEM scan tool. The company’s TPMS decoding tool can trigger or activate sensors, receive TPMS sensor information and send the TPMS sensor information to the vehicle’s ECU. The TPMS sensor information collected by the TPMS decoding tool includes the pressure within the tyre, the temperature of the TPMS sensor, the wheel rotating speed, the TPMS sensor unique ID, the battery status of the TPMS sensor, and more.
TMPS legal requirement was introduced in 2008 after Firestone recalled more than 6.5 million vehicles due to tread separations. As per the first version of the Tread Act, from 2008, all passenger vehicles and light trucks with GVWR of 10,000 lbs and less should be equipped with a TPMS. Europe, in 2012, too formulated EU TPMS regulations to make to TPMS compulsory in all new passenger vehicles from November 2014.
As of now the European Union, the United States, South Korea and China have already made TPMS mandatory in the vehicles, while other countries such as Japan, Indonesia, India, the Philippines and Malaysia are in the process to introduce TMPS legislation in the respective markets soon.
“Many countries and auto companies have a vision of zero road accidents or casualties. Followed by the US and Europe, other major markets, such as China, which is the largest automotive market, have also made TMPS mandatory. Multiple companies are also voluntarily implementing TPMS in their vehicles to optimize safety, mileage, and comfort. These trends will drive the growth for the TMPS market,” Ronceret told Tyre Trends.
According to a research report, by 2026, TMPS penetration will up to 79% and 25.26 million units be installed from the installation 16.49 million units in 2019. China will be the main growth driver for the TPMS segment.
Ronceret was appointed to the position last year to tap growing demands of the OEM, Truck and Industrial segments for Europe, Middle East, Africa and Australia and New Zealand regions. “There are lots of new activities that are happening in the OEM, Truck and Industrial segments. We have different objects for different segments. As the market grows and technology changes, ATEQ will bring innovations to increase our presence in the OEM, Truck and Industrial markets,” Ronceret said.
Air inflation
Tyres are the only component of the vehicle that touches the road. From safety and comfort and mileage largely depend on the air inflation in the tyres. Generally, a tyre naturally loses 0.2 atmospheres (2.9 PSI) every three months, and a slow puncture precedes 85% of all tyre blasts. Inappropriate tyre cause to the instability of the vehicle, and less mileage and the total life of tyres.
According to a study, around 30% of underinflated tyres increase fuel consumption by 5%. NHTSA, US EPA and US GAO studies say that in the US alone the overall deterioration in fuel economy due to underinflated tyres is 3.3% and the average annual wasted fuel is between 1.2 and 2.8 billion gallons. Over 2 billion gallons of fuel are wasted in Europe annually due to underinflation, as per Bridgestone Europe. At the same time, tyre life reduces by 50% if it runs at 20% under-inflation.
A TPMS updates the driver on air pressure conditions of the tyres. Inside the tyre, behind the valve, sensors measure pressure and temperature all the time, and as soon as the tyre pressure starts to drop, the sensors begin omitting alert signals to the ECU.
There are two types of TPMS sensors, direct and indirect. Using the TMPS inside the wheel, the direct TPMS sensor, mounted on the wheels or tyre, reports accurate data on tyre pressure to the ECU. The direct TPMS systems are used European, the US and Asian markets.
Based on the ABS sensors, the in-direct TPMS system analyses the acceleration of the tyre and if the dimension of the tyre changes, so will the acceleration of the tyres. The ABS sensors notice the changes in the dimension of tyres and indicate the same. “The direct the TPMS is more precise as it gives you real-time data on pressure, whereas the ABS sensors only give you an indication,” said Ronceret.
Today the company operates in the three TMPS segments- Workshop Tools, Truck TPMS and Industrial TPMS.
ATEQ workshop tools are used in OEM garages and vehicle workshops for activating, diagnosing, programming and fitting TPMS valves and sensors. The workshop tools also help to replace the broken sensors in the tyre and even programme the sensors. “There are companies that make universal sensors, so ATEQ TPMS tools help to write programmes for those sensors. The tools also help to pair the sensors with the ECU,” explained Ronceret.
Revenue-wise, the workshop tool is segment is the largest business for ATEQ. “For the workshop tools, we have to be evolutive. A bigger challenge for the company is to have the compatible tools for the existing and future vehicles,” said Ronceret.
The industrial tools, fitted at one place, are used in the vehicle production line to check whether tyres are accurately inflated before mounting on the vehicles.
ATEQ has a comprehensive range of TPMS control equipment for small to large manufacturing. On the assembly lines, its TPMS test antennas are key for the installation of TPMS sensors and the pairing of TPMS sensors with the vehicle’s ECU. The company supplies customized TPMS tools test TPMS sensors on OEM light vehicle and truck production lines, as well as wheel and tyre assembly lines, laboratories and test benches all over the world.
In trucks, a 10 PSI, less air pressure increases, rolling resistance by 2%, while industry surveys show that consistent proper tyre inflation in truck tyres would increase fleet wear by 17%. Today, understanding the importance of the right tyre pressure, now many fleet companies have installed TPMS systems to improve the total cost of ownership. For the European truck industry, the company provides the ATEQ VT TRUCK tool, which checks tyre pressure and sensor batteries to prevent under-inflation and reduce vehicle downtime due to tyre blowouts. The tool is compatible with most European truck and bus TPMS sensors and benefits from a continually growing vehicle coverage, thanks to frequent database updates,
The company gets data from all OEMs to make sure it is updated with the times. “We have all data since we work with OEMs since the integration at the production lines to the workshops. It is also essential of them to we can serve them all the times.” The company maintains confidentiality on the secured data. The tools deal with the information collected from sensors but do not store them.
- Hana RFID
- Hana Technologies
- Circular Rubber Platform
- RFID Tyre Tags
- Tyre Lifecycle Management
Hana RFID Joins Circular Rubber Platform
- by TT News
- March 19, 2025

Hana Technologies, Inc. (Hana RFID), a global leader in the design and manufacturing of embeddable RFID tyre tags, has become the first RFID company to join the Circular Rubber Platform. This development aligns with Hana RFID’s mission to drive innovation in tyre traceability and reinforces the company’s long-standing commitment to sustainability and circularity in the tyre and rubber industry.
Hana RFID has been at the forefront of RFID-enabled tyre traceability since 2005, facilitating smooth tracking from cradle to grave and promoting circularity. Hana's RFID tyre tags, which are embedded during manufacturing, provide each tyre a distinct digital identity, facilitating complete lifetime tracking from manufacture and use to recycling and reuse. Hana hopes to promote RFID usage in sustainable tyre lifecycle management by working with leading companies in the sector, which will eventually save waste and increase resource efficiency.
Using radio frequency identification (RFID) technology, an RFID tyre tag is a tiny, embedded device that tracks, monitors and controls tyres. In addition to providing smooth connection with inventory monitoring, fleet management systems and other digital applications, such as the European Digital Product Passport (DPP), these tags produce digital twins of tyres. Hana's RFID solutions empower the whole tyre ecosystem to expedite fleet management, improve inventory control, optimize maintenance, and create creative business models that increase sustainability and efficiency.
Val Peters, VP – Marketing, Hana RFID, said, “We are excited to join the Circular Rubber Platform as the first RFID company in this initiative. RFID technology is essential for advancing a circular economy in tyre manufacturing, and we look forward to collaborating with partners across the rubber sector to drive sustainability on a broader scale.”
Enrico Koggel, Co-Founder, Circular Rubber Platform, said, “RFID technology is key to enabling a circular rubber economy. RFID enables seamless tracking from production to end-of-life recycling by connecting material and production data into each rubber product. It provides traceability and easy identification and allows for smart sorting of materials and efficient recycling to ensure responsible reuse, remanufacturing, recycling and waste reduction. We are therefore very happy to announce Hana as a new member of the Circular Rubber Platform, with the technology and experience they can provide to the platform. We look forward to sharing knowledge on RFID and working out opportunities for this technology in rubber industries that require Digital Product Passports in the near future, such as footwear.”
- TÜV SÜD
- Testing Laboratory
- Electromobility
- Chemical Testing
- Comprehensive Testing
TÜV SÜD Expands Test Laboratory In Frankfurt
- by TT News
- March 18, 2025

TÜV SÜD has expanded its test laboratory in Frankfurt am Main and unveiled new testing facilities at an Open Lab Day at the site, giving customers and employees an exclusive insight into the new state-of-the-art testing environments. The expansion strengthens TÜV SÜD’s position as a leading provider of independent testing and certification services.
Car charging plugs can now be tested in the lab to assess features like weather resistance, mechanical strength and electrical safety. To guarantee the endurance and durability of charging plugs and other parts, the new lab can also conduct crash testing on them. The inclusion of performance testing for tiny batteries is another significant development. Basic functional analysis will be the main emphasis of these tests at first, but in the second part of the year, comprehensive safety and performance evaluations will be included. Similar to this, power tool testing capabilities have been greatly increased to give manufacturers an even more thorough evaluation of the calibre, robustness and safety of their goods.
The capability to ascertain the biogenic carbon content of materials is an additional highlight of the expansion. These assessments support the implementation of sustainable manufacturing methods by giving businesses evidence of the utilisation of renewable raw resources. In order to make sure that packaging and other materials fulfil the strictest safety regulations and don't leak dangerous compounds into food, the testing infrastructure for materials that come into contact with food has been increased at the same time. It's also important to note the recently added ability to evaluate welding fume filtration systems, which may undergo a thorough performance assessment and will soon be certified.
TÜV SÜD is now able to provide an even greater variety of chemical testing services to make sure that products satisfy the most recent regulatory standards thanks to the expansion of its Frankfurt laboratory. With standardised testing for compounds including PFOS, PFOA, C9-C14 PFCAs, and PFHxS, there is a special emphasis on PFAS analysis. Due to the laboratory's expansion, even more businesses may now make use of its extensive testing knowledge, which includes services related to durability testing, risk assessment and certification for a range of product categories.
Walter Reithmaier, CEO, TÜV SÜD Product Service GmbH, said, “By expanding our laboratory in Frankfurt, we are responding to growing demand for product testing and certification. Our new testing capacities will set new standards in safety, sustainability and performance. We look forward to supporting our customers with state-of-the-art testing technology and professional expertise.”
- Koala Technologies
- KTL
- Te.Sense Bloom
- non-destructive rapid tyre deflation testing
- FMVSS 110
- Kenneth Martin
- Huawei AITO
- SAIC Motor Corp
- GAC Motor
- Mike Lee
Koala Technologies Launches Non-Destructive Rapid Tyre Deflation Test
- by TT News
- March 12, 2025

Chicago-based Koala Technologies (KTL), a leading automotive testing, measurement and evaluation tools provider, has launched Te.Sense Bloom – a breakthrough in non-destructive rapid tyre deflation testing. The company has introduced the base kits starting at USD 20,000.
The solution the company claims is fully compliant with FMVSS 110 and emerging EV stability test standards. The Te.Sense Bloom allows passenger vehicle manufacturers and tyre makers to cost-effectively reuse solutions, thereby optimising test programmes while reducing waste.
Currently, the rapid tyre deflation tests often rely on a vehicle being driven over special roadway cleats at defined speeds. This method sees tyres destructively punctured and destroyed by the cleats, and internal inflation pressure is quickly reduced to atmospheric pressure. At times, these tests aim to ensure that the tyres are safely seated on the wheels post rapid deflation, wile at times it is to evaluate vehicle stability in terms of tyre failure.
The company stated that this tests however require destroying multiple tyres, not only leading to waste but may also corrupt certain vehicle dynamics tests that call for a single, targeted tyre failure.
On the other hand, with Te.Sense Bloom, the industry can use non-destructive controlled, rapid deflation for the selected tyres. Using a controllable central air ejector valve with a volume and a flow capacity that simulates a sudden tyre press loss. While the method sounds simple and frugal, the innovation lies in relation with the turn-key nature of Te.Sense Bloom. Automotive testers and engineers get a repeatable set up method, easy in-car operation and simple connectivity with data acquisition systems. As part of its comprehensive supply to Te.Sense Bloom customers, KTL even offers a wheel setup service to simplify test preparations.
The other advantage of Te.Sense Bloom is that the tyre deflation event can be triggered from inside the vehicle or remotely that further expands test scenario possibilities. It can be used for testing tyre inflation pressures up to 100 PSI and speeds up to 140 kmph (87 mph). The real-time tyre inflation data at 100 Hz has a claimed data accuracy of +/-0.1 PSI.
Kenneth Martin, Head of Tyre Testing at the Transportation Research Center, said, “We have significant experience with rapid tyre deflation tests, using all types of methods, and we’re looking forward to evaluating KTL’s Te.Sense Bloom, since it represents a turn-key, non-destructive solution. There’s definitely some baseline justification for test equipment like this because it fundamentally means consuming fewer tyres. But Te.Sense Bloom’s inherent connectivity opens some other doors also, since triggered and monitored rapid tyre deflations are becoming an area of interest for vehicle stability testing, especially in EV space.”
The first U.S.-specification kit has been delivered to the Transportation Research Center in Ohio for initial evaluations.
Being compliant with EV stability testing standards the Te.Sense Bloom is already being used by OEMs globally such as Huawei AITO, SAIC Motor Corp and GAC Motor to conduct regulatory tests such as GB/T 38796-2020 (Performance Requirements and Test Methods of Automobile Blow-out Emergency Safety Device).
Mike Lee, Founder and President, KTL, added, “Koala Technologies is excited to introduce Te.Sense Bloom into new markets, beginning in 2025. Bloom has been widely adopted for vehicle development testing in China over the last several years, becoming a must-have tool for many OEMs and key suppliers. It’s one example, among many, of an excellent, trusted, useful automotive testing device that no one knows about outside China. A part of our mission at KTL is to shine a light on some of these exciting technologies that are currently available, but not widely known. Another part of our mission is to help customers achieve their goals more efficiently and at a lower cost. We look forward to the upcoming testing at the Transportation Research Center in Ohio, and we hope that Te.Sense Bloom proves to be a good fit for automotive development programmes in the U.S and beyond.”
- Bridgestone
- Bridgestone Corporation
- Tyre and Road Wear Particles
- TRWP
- TWRP Collection
Bridgestone Develops New TRWP Collection Method
- by TT News
- March 10, 2025

Bridgestone Corporation has developed a new Tyre and Road Wear Particles (TRWP) vehicle collection method aimed at understanding the environmental impact of TRWP. The solution was also displayed at the Tire Technology Expo 2025, held in Hannover, Germany, from 4 to 6 March.
TRWP is made up of a blend of road pavement components and tread (tyre surface). In order to comprehend the particle size distribution, dispersion behaviour, and environmental impact – as well as to create effective collecting techniques – Bridgestone is actively engaged in a number of TRWP research projects. The company is dedicated to comprehending TRWP and lowering its generation through these initiatives.
Utilising the B-Mobility testing facility at the Bridgestone Innovation Park in Kodaira, Tokyo, the company has created a state-of-the-art technique that makes it possible to gather TRWP effectively. Bridgestone has used laser light scattering in conjunction with a high-speed camera to visualise the dispersion of particles like TRWP. Based on this, the company has developed a device that effectively catches TRWP and covers the whole tyre. Additionally, the technique made it possible to collect TRWP effectively in a state that removes the effects of exhaust pollutants and broken dust by employing autonomous driving and an electric car with regenerative braking.
Through the Tire Industry Project (TIP), which is part of the World Business Council for Sustainable Development (WBCSD), Bridgestone has been researching the physical and chemical properties of TRWP and their implications on the environment. In addition to the continuous co-creation and internal R&D cooperation, Bridgestone is speeding up its efforts to evaluate TRWP's environmental consequences by collecting it effectively and with a high recovery rate using its recently developed collection technology.
Comments (0)
ADD COMMENT